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Experimental studies have been conducted in a curved mixing layer in which

both the velocity ratio and the density ratio were variable. Flow visualization

studies and profile measurements covered a wide range of experimental condi-

tions. The structures observed experimentally were examined in the Light of

three different instability mechanisms which can exist In the same mean flow.

For the case of mixing layers with uniform density, it was found that the nor-

mal large spanwise vortex structures can be weakened or inhibited by Taylor- , /0 .

- G irtler instability if the inner stream Is faster than the outer stream. For the

(" case of mixing layers with different densities, three-dlmensionality is greatly

enhanced by Rayleigh-Taylor instability if the inner stream is heavier than the

outer stream, and especially if the Inner stream'is also faster. In the former

case the growth rate of the mixing layer was found to be insensitive to changes

in the velocity ratio.

The effects of curvature on the structure of the curved turbulent mixing

layer were explored in terms of length scales and celerity for the large spanwtse

structures where these structures could be observed. Other things being equal.

the celerity of the large structures was found to depend on density ratio and

velocity ratio but not on the sense of the mean streamline curvature.

.
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lI= or STIEBOIS

Symbol Description
p

A a constant

a constant
'i S a constant ..

b a constant; also, the half-height of the channel .

c celerity

d gap between two concentric cylinders, 4- R)

.0 spacing between streamwise structures

F neutral stability boundary

f focal distance

fn a function

S G us.
equivalent reduced gravity, defined as

g gravitational acceleration

reduced gravitational acceleration, defined as g (pA - P),otl + Pi)

L unit vector in z- direction

., gradient Richardson number, same as M"

K a constant L

k wave number

L characteristic length scale

M mass

Pr Prandtl number

p pressure

p. stagnation pressure

q temporal growth rate I

. . o-• . . . •- .-. .. . .
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R mean radius of curvature

i gradient Richardson number, defined as -g 46 .

r radial coordinate

S spacing between spanwise structures

8 a scalar

Th Taylor number, defines as ( - 0 2)AM

t time

U nozzle exit velocity; also, characteristic velocity

U() velocity profile

u velocity component

U velocity vector 3

V characteristic velocity

velocity component

V a vector

V cross-stream velocity

W characteristic velocity, also, a physical quantity ....

Wi velocity component

X position vector of the origin of the moving coordinates L

Z streamwise (tangential) coordinate

ZV x-coordinate of the virtual origin

y normal (radial) coordinate

y -coordinate of the virtual origin

Z quantity defined by Eq. (7.2.8)

9 spanwise (axial) coordinate

a4  temporal growth rate

a constant

r the product ur

L-I.1
*L__1



X

thickness of the miin layer

visual thickness of the mixing layer

9 a small quantity

vorticity component in x - direction

vorticity component in z- or e - direction: also, displacement of fluid

interface

9 angular coordinate

A characteristic length scale

A wave length

A+ fluid viscosity

v kinematic viscosity

vorticity component in V- or r- direction

p fluid density

velocity potential

, stream function

stream function

n angular velocity vector of the moving coordinates

n angular velocity

w vorticity vector

frequency; also, angular velocity

(') time-averaged quantites

perturbation quantities

quantities pertinent to the outer stream

quantities pertinent to the inner stream

('). the maximum of a quantity

.( )r the minimum of a quantity
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1. Introducoo

It is well known that the turbulent shearing stress in a curved shear layer

depends strongly on the sense of the curvature. If the high-speed stream is on

the inside, much higher turbulent shearing stresses occur. This effect has been

attributed to centrifugal instability; for example, in the experimental work by

Margolis and Lumley (1965) and by Wyngaard (1967). The associated differences

in flow structure, however, have not been fully explored.

Density differences can be expected to modify the effects of centrifugal

forces. No experimental reports have been found in the literature which deal

with combined effect. of velocity difference, density difference, and curvature.

The general case is therefore an interesting problem from both the academic

and the practical point of view. The purpose of this experiment is to study the

combined effects of mean streamline curvature and density difference on the

structure of turbulent mixing layers. Flow-vLsualizatlon studies for such flows

can be very instructive, and are a major component of the present research.

There are three different mechanisms of instability in a general curved mix-

ing layer. The KelvLn-Helmholtz instability. associated with the free shear layer

per s. produces spanwime vortical structures. The Taylor-Goirtler instability.

associated with centripetal and Coriolis accelerations in a curved flow, produces

streamwise vortical structures. The Rayleigh-Taylor instability, associated with

the effect of a body force opposed to the density gradient, produces three-

dimensional mushroom-like structures. The effect of interaction among these

instability mechanisms on the structure of a curved turbulent mixing layer with

variable density will be discussed in this chapter.

ta . . . . . -- - - - --.. .-..-
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A general curved mixing layer is shown schematically in the accompanying

drawing. Two uniform parallel streams, initially separated by a splitter plate for 0

z < a, are guided into a curved channel of half height 6 and mean radius of

cuivature R. The velocities of the two streams are uniform at the inlet and are

denoted by U. and U , respectively, for the outer and inner flows. The uniform

densities of the two streams are p. and pt. respectively.

p.

i -  -.
I

The flow of interest is the mixing zone not too far downstream, where 6. the

thickness of the mixing layer, is small compared with the channel height. It is

inherent in any definition of a mixing layer that flow quantities like u or p are

much more uniformly distributed in the free streams than in the mixing zone.

As a result, an inflection point must exist in the proile of a particular flow quan-

tity unless this quantity is constant across the mixing layer (neglecting the wake

due to the splitter plate).
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Under these conditions, three global parameters should suffice to define a

curved mixin layer. These may be taken as the density ratio and the velocity

ratio of the two incoming uniform streams, and the ratio of layer thickness to

mean radius of curvature. Any dependence of the flow on Reynolds number is

neglected. on the ground that the flows of interest are fuily turbulent. Any suit-

ably normalized time-averaged flow quantity W can thus be expressed as a

function of three dimensionless spatial variables and the three global parame-

ters. The parameter space itself may contain one or more surfaces separating

different flow regimes, in each of which a distinct flow structure predominates.

These surfaces can be represented schematically by, say,

F t o, , =-1

and are associated with boundaries of neutral stability for various flow struc-

tures. It is useful by way of Introduction to collect the available analytical evi- -",

dence on this question for the case of laminar flow.

. . Taylor-Grtler Insability

When there Is no inflection point in the velocity profile, a constant-density

flow is not subject to Kelvin-Helmholtz instability, according to Rayleigh's

inflection-point theorem discussed in Section 1.2 below. By studying such flows

we may then be able to understand better the phenomena introduced by cen-

tripetal and Coriolis accelerations. One flow providing such an opportunity is

circular Couette flow, which involves the motion of a viscous fluid of uniform

density between two concentric cylinders rotating at constant angular velocity.
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In a classic paper, Taylor (1923) formulated the viscous instability problem

for circular Couette flow and solved the elgenvalue problem analytically for the

caue in which the gap d between the two concentric cylinders is small com-

pared to the mean radius. The stability of the flow was found to depend on the -

dimensionless quantity 7h = Rdl(n t1 -0 n)A,2. now known as the Taylor

number. For the case when the two cylinders rotate in the same direction (the

case of interest here), Taylor found the flow to be stable to axisymrnetric distur-

bances when the Taylor number is smaller than a critical value of 1708 (the

numerical value cited was obtained by Peliew and Southwell [ 1940] by a refined

calculation). This value is the same as the critical Rayleigh number found for

Benard convection. Jeffreys (1928) showed that when the ratio of angular velo-

city of the two cylinders approaches unity there is an exact analogy between cir-

cular Couette flow and the convection instability between two rigid surfaces.

Generally, however, the circular Couette flow with both cylinders rotating in the

same direction is analogous to the convection flow with streaming. In the latter

case, it was proved mathematically by Jeffreys that the convection cells are

formed parallel to the streaming direction.

Taylor's 1923 paper also established the stability boundary experimentally.

Coles (1965) later showed that several different flow regimes can exist in this

simple geometry, depending on the relative rotation of the two cylinders.

Roughly speaking, when the inner cylinder is rotating faster than the outer -

cylinder, instability appears first in the form of axisymmetric Taylor-Gortler

vortices. When the difference in rotation speed increases into the non-Lnear

range, the axisymmetric structure turns into a non-axisyrnmetric wavy mode of

motion. When the outer cylinder is rotating faster, the flow is stable in most of

the laminar regime. Turbulence emerges in the form of a spiral structure trav-

elling around the cylinders.

L . % . ' ' . - . T r ' - '- r , " -- ,- . - - - -- -" ." - -- . . . " - -7 = ; -. . . . a- -,
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Among the wealth of flow structures produced as a result of centrifugal tnsta-

bility. only the axisymmetric Taylor vortices have been thoroughly explored. 0

The physical mechanisms involved in the formation of axisymmetric Taylor vor-

tices have been delineated by Coles (1967). Using a nontrivial algebraic formula-

tion. Coles showed that the essential elements of the flow in the Taylor vortices

are (a) the coupling of primary and secondary flows through the action of

Coriolis force, and (b) the production of streamwlse vorticity through the

mechanism of vortex tilting.

1.2. Kelvin-Helmholtz Instability

Simplified forms of the two-dimensional plane stability problem have long

been studied, beginning with work by Helmholtz (1868) and Kelvin (1871). Sup-

pose that two horizontal parallel infinite streams of different velocities and den-

sities are in contact with each other, as shown in the sketch. The flow is inviscid

and incompressible.

.... U2

-

U1

Kelvin assumed that the disturbed flow is two dimensional and irrotatlonal on

each side of the interface and studied the growth in time of small disturbances

in terms of the velocity potential of the flow. Disturbances of the form

P(X)e it +10 are sought which satisfy the Laplace equation and the boundary L_-

L t ....



conditions that the pressure and the vertical velocity are coutinuous across the

* disturbed interface. The resulting eigenvalue problem has the solution

4= -- P +plug + k (U, - U) (1.2.1)
P1 +Ps P+Pa

Hence the flow is always unstable, for all wave numbers k. as long as U, i Ug.

The physical mechanism underlying Kelvin-Helmholtz instability has been

explained by Landau and Ufshitz (1959) in terms of the pressure field associated

with the disturbance. When a small periodic displacement is given to the origi-

nally plane interface between the two streams, the pressure disturbance is 180

degrees out of phase with the displacement, and hence the disturbance is

amplfifed. Batchelor (1967) described Kelvin-Helmholtz instability in terms of

vorticity dynamics. Since the slip stream in the undisturbed flow is equivalent

to a plane vortex sheet, amplification of any displacement of the interface away. ft

from its original position results from the self-induced velocity of the vortex

sheet and the redistribution of vorticity as a result of convection.

Rayleigh (1880) discussed the inviscid stability of a homogeneous shear layer

having a smoothly varying velocity profile instead of a step discontinuity. If the

disturbance is small, Euler's equation can be linearized to give

Uu ,' + L i -Vp' (1.2.2)

where U(V) is the basic velocity profile, I is the unit vector in the z-direction,

and u' and p' are the disturbance velocity and pressure, respectively, for two-

dimensional disturbances. The disturbance velocity can be represented by a

stream function;
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le W9 '(1.2.3)
'y Ow p-

Normal mode analysis assumes this stream function to have the form

S(V)e t  (1.2.4)

The linearized Euler equation can then be reduced to an ordinary differential p
equation. Elimination of the pressure leads to the stability equation of Rayleigh.

(U - c)(*" -z ) - ('t =0. (1.2.5)

p--

Rayleigh (1880) proved that a necessary condition for instability is that the

basic velocity profile U(V) should have an inflection point. Fjortoft (1950)

showed that it is further necessary for instability that the absolute value of vor-

ticity be a maximum at the inflection point. An argument by Tollmien (1935)

suggests that neither of these conditions is sufficient for the flow to be unstable.

Michalke (1964, 1965) studied the instability of the hyperbolic-tangent velo-

city profile for a homogeneous fluid and calculated the growth rate of small dis-

turbances as a function of wave number, using Rayleigh's inviscid stability equa-

tion (1.2.5). His result, reproduced in Fig. 1.1, indicates that a wave number

exists for which the spatial growth rate is a maximum.

Maslowe and Kelly (1971) studied the inviscid stability of a heterogeneous free

shear layer in terms of the Taylor-Goldstein equation, a counterpart of

Rayleigh's equation for flow with variable density in an arbitrary gravitational

field. For the came of negligible gravity force, they calculated the spatial growth

rate for small disturbances as a function of both wave number and density

I-__
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ratio, as shown in F g. 1.2. The figure shows that, for a certain range of density

ratios, the growth rate Is smaller than for a homogeneous shear layer. Davey

(1971) and Davey and Roshko (1972) studied the heterogeneous shear layer

experimentally and found the theoretical calculations by Michalke and by

Liaslowe and Kelly to be consistent with their measurements. .

The problem of the stability of a free shear layer in a viscous fluid is a gen- .

eralization of the Kelvln-Helmholtz problem. The linearized mathematical prob-

lem leads to the Orr-Sommerfeld equation. For a homogeneous fluid, Curie P

(1956) considered a hyperbolic-tangent velocity profile and obtained a minimum

critical Reynolds number of 8.9. Betchov and Szewczyk (1963) also considered

the hyperbolic-tangent profile, but did not find a minimum critical Reynolds

number. Physical reasoning led them to predict a minimum critical Reynolds

number of 150 for a temporally growing shear layer.

Lessen and Ko (1966) solved the Orr-Sommerfeld equation numerically for a

Blasius velocity profile, using the parallel-flow assumption. They found a

minimum critical Reynolds number of 3.6. When non-parallelism was taken into

account, the minimum critical Reynolds number Increased to 12. The stability

curves obtained by Lessen and Ko are reproduced in Fig. 1.3 and Fig. 1.4 for the

cases of small disturbances to parallel and non-parallel flow, respectively. The

curve with at = 0 represents the curve of neutral stability. Ko and Lessen

(1969) revised their earlier calculations and found no minimum critical Rey-

nolds number under the same assumption of parallel flow, and a minimum criti-

cal Reynolds number of 10.2 when non-parallelism was considered.

IL
The stability of a heterogeneous shear layer in a viscous fluid has been stu-

died by Baker, Rozenman and Weinstein (1968), who solved the Orr-Sommerfeld

equation using Lessen's method (Lessen 1949). Their results do not include a

complete neutral stability curve. Maslowe and Thompson (1971) employed

I-_



Holmboe's model for the density profile and a hyperbolic-tangent velocity profile

and solved the Orr-Sommerfeld equation numerically. The density difference P

was derived from the temperature difference governed by the energy equation.

The neutral stability curve determined by Maslowe and Thompson for the

viscous shear layer with density difference, for the case where there is no gravity

term, is shown as the curve labelled JO = 0 in Fig. 1.5. According to this curve,

there is no minimum critical Reynolds number. The other curves in the same

figure, corresponding to other values of Jo (the gradient Richardson number

= -- ). are for flows influenced by gravity.

1.3 Rayleigh-Taylor Instability
In a curviliuear motiohthe centripetal acceleration imposes an inertial body

force acting like gravity on the fluid. The system is then statically stable or

unstable according to whether the heavier fluid is on the bottom (the outside)

or on the top (the Inside). Historically, this problem was first studied by Ray-

leigh (1883). Taylor (1950) pointed out the equivalence of centripetal accelera-

tion and gravity. For the gravitational case, the mathematical nature of this

problem, known generally as Rayleigh-Taylor instability, can be stated as follows,

according to Lamb (1932).

P2

i L.9



Consider an Initially flat interface subjected to a small disturbance, as shown

in the accompanying sketch, so that the disturbed surface can be written as

i= acoshz a 131

Since the fluids are initially at rest, the disturbed flow will be irrotational if

viscosity in neglected. For the came when both streams are unbounded, the velo-

city potential satisfying the condition of unmixed fluids at the interface can be
written

9PI - PH ~~CoslcZ)uk gill < 0 (1.3.2)

and

p te oil*kze' e. y> 0. (1.3.3)

Across the interface, there can be no difference in pressure. Bernoulli's equa-

tion reads

Pi V Y< (1.3.4)

P2 at D.~>

Hence we have pl(2-- g) pg(- L2g) and ogk Whe the
k EI- P 2



lower fluid is heavier; i.e., when pi > pu, w is real, and the disturbance pro-

pagates like a wave. However, when the upper fluid Is heavier, ri is imaginary,

and the disturbance grows exponentially. Lamb also discussed the case when

the fluids are bounded both from the top and from the bottom by horizontal

surfaces, and found an expression for ri as a function of kb, where b in the p

present notation is half the distance between the two bounding surface.

Although the formulation given above assumes waves propagating in the z

direction, the same result applies to waves propagating in any other direction

perpendicular to y.

Experimental studies of Rayleigh-Taylor instability has been performed by

Lewis (1950). Emmons, Chang, and Watson (1980), Cole and Tankin (1973) and

Ratafia (1973). Bellman and Pennington (1954) investigated the effects of

viscosity. Using a model equation in which viscosity is incorporated as a damp-

ing term for a second-order system, Plesset and Whipple (1974) found that

viscosity is Important in determining the wavelength of the fastest growing dis-

turbances, for which A 41r(V/V')'A where g' is reduced gravity and is defined

as ( p,:+ps9.

A summary by Sharp (1983) shows that the structure produced by Rayleigh-

Taylor instability is three-dimensional and can be strongly influenced by the

density and viscosity profiles. Typical shapes of the structure at early times are

like mushrooms, fingers, or spikes. These shapes soon interact with each other

and break up by various mechanisms which are not yet understood. Eventually,

however, If the two fluids are immiscible, the heavy fluid will tall completely

underneath the light fluid and stay there, as long as the ocean is underneath

the sky.
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The irreversible process discussed in the last paragraph can be preempted if

the density of the falling and rising fluids can be changed by external Interven-

tion. For example, if a horizontal layer of fluid bounded by two horizontal rigid

surfaces is uniformly heated from below and cooled from above, so that a den-

sity gradient is maintained in a direction opposite to the gravitational force, a p

colder and hence heavier fluid element which has fallen as a result of gravity will

be warmed when it comes close to the bottom surface, where it may change

roles and become the lighter fluid. This kind of thermal instability problem, ori- S

ginally defined by B6nard (1900), was first investigated mathematically by Ray-

leigh (1916). The critical Rayleigh number for instability, for the case where

both surfaces are rigid, was first calculated by Jeffreys (1928). The value deter-

mined by Reid and Harris (1958) is 1707.762. Experiments done with two rigid •

boundaries, for example by Oertel and Kirchartz (1979) and Oertel (1982), show

roll cells with orientation depending on the shape of the container. Since in our

experiments, in which the mixing layers are bounded by fluids of different

species, the density of a fluid element is not changed except by molecular

diffusion (which is rather small), we do not expect the same kind of structure to

appear. Hence we will limit our discussion on B~nard cells. Detailed discussions

of this thermal instability problem can be found in Chandrasekhar (1961) and

Drazin and Reid (1981).

1.4. Turbulent Flow

The plane turbulent mixing layer has attracted the attention of many

researchers for many years. An important feature in this flow is the organized

structure first discovered by Brown and Roshko (1971, 1974). As shown by

Brown and Roshko, the plane mixing layer contains large spanwise vortical

structures which travel downstream with a definite speed, or celerity. These vor-

tices grow by entrainment of fresh fluid and also by more complex processes

such as pairing and tearing. The effects of velocity ratio and density ratio on

...............
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the growth of the plane mixing layer have both been studied experimentally.

For example, an expression for the growth rate, 6 = const I U - 1, was

proposed by Sabin (1965). This expression was endorsed by Brown and Roshko

(1974). who also found the effect of density difference on the growth of the mix-

ing layer to be small. Brown (1974) and Dimotakis (1984) expressed the growth

rate as a function of both velocity ratio and density ratio. The formation of vor-

tices in a laminar free mixing layer has been explained by Michalke (1965a),

using stability theory. In turbulent mixing layers the large-scale two-

dimensional vortices discovered by Brown and Roshko (1974) can presumably

still be attributed to the general Kelvin-Helmholtz instability. Even though the

laminar stability theory does not apply in turbulent flow, the basic driving

mechanism associated with the layer of concentrated vorticity is the same.

The contributions mentioned above all refer to the two-dimensional instabil-

ity of the plane mixing layer. The experiments of Brown and Roshko indicate,

however, that the main structure of the turbulent mixing layer is three-

dimensional, although organized structures also exist in the streamwise direc-

tion. The interaction of the streamwise structures with the spanwise vortices

was shown by Breidenthal (1978) and Bernal (1981) to be important for transi-

tion. The three-dimensional instability of the structure of a shear layer has long

been considered a topic of vortex dynamics; see, for example, the work of Moore

and Saffman (1975), Saffman (1980), Pierrehumbert and Widnali (1982), and

Robinson and Saffman (1982).

For free shear layers in a curved channel, with uniform density, most of the

existing information is based on hot-wire measurements. Margolis and Lumley

(1965) and Margolis (1965) investigated the curved shear layer formed at the

exit of an open-circuit wind tunnel. The high-speed stream was supplied by the

I
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tunnel, and the low-speed stream came from entrainment into the high-speed

stream. The two streams had different thicknesses, with the low-speed stream

thicker by a factor of 4. The radius of curvature of the outer wall of the curved

channel was four times the total channel height. Margolis and Lumley reported

much stronger Reynolds shearing stresses and turbulence production for the

case when the high-speed stream was on the inside. Wyngaard (1967) and Wyn-

gaard, Tennekes, Lumley, and Margolis (1968) repeated the measurements and

calculations, using the same basic wind tunnel but improving the small-scale

resolving power of their hot-wire instrumentation; they concluded that the tur-

bulence production in the unstable case, with the high-speed stream inside, is

actually close to that in the stable case, with the high-speed stream outside.

However, the large difference in turbulent shearing stress remains. The Rey-

nolds shearing stress measured by Wyngaard is shown in Fig. 1.6, with the stable

and unstable cases together for comparison. It is clear that not only is the max-

imum shearing stress larger in the unstable case, but also the region of appreci-

able shearing stress is thicker. This effect has been attributed to centrifugal

instability. Hunt and Joubert (1979) proposed a Reynolds-stress re-orientation

theory for this phenomenon and found that qualitative agreement was achieved

between theory and experimental data obtained in a curved duct flow. Few of

the studies mentioned above paid particular attention to the possible effects of

bounding curved walls on the turbulent shear layer. Wood and Bradshaw (1982)

suggested that the presence of a wall can have large effects on the flow struc-

ture. Gibson and Younis (1983), however, concluded otherwise. None of these

studies provided any evidence for the structure of the flow by means of flow

visualization, which is a main component of the present study.

A
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1.. The Prent Problem

The main purpose of this study Is to look for efects of streamline curvature "

on the structure of the turbulent mixing layer. Discussions in the previous

paragraphs have considered the stability and structure of various limiting cases.

When both density and velocity are variable in a curved mixing layer, we

encounter the general case.

The Taylor-Grtler instability, which is responsible for the formation of

streamwise vortices in curved shear flows, can be extended to cover flows with S

variable density. It is relatively easy to extend Taylor's argument, or Rayleigh's

criterion, to inhomogeneous flow. Consider the incompressible motion of an

inviscid fluid in a circular path.

a 11U

The centrifugal force experienced by a fluid element situated at a radial location

r is equal to mu 2 ,k = (inuTr)2/tn, where tour is the angular momentum and

nm is the mass of the fluid element. When the flow is in equilibrium, this centri-

fugal force is balanced by the local pressure force exerted on the fluid element

by its surroundings. Suppose that the fluid element is displaced to a new radial



location r', where the local pressure field supplies a net balancing force

(m'u'r")2At'3 , as shown in the accompanying sketch. The new centrifugal

force experienced by the fluid element becomes (Maw)snrDs, because the

angular momentum and the mass of the fluid element are both conserved dur-

ing the displacement. 5

The fluid element will tend to return to its original location r if the restoring

force is greater than the centrifugal force; i.e., if m'u'2 r' 2 > mnUr 2 . For two-

dimensional curved shear layers involving a density difference, the conclusion is

that the basic flow will be stable if d- (pu2r2) > 0. This condition has been
di'

proved more rigorously by Synge (1933) to be necessary and sufficient for the .1

stability of axisymmetric disturbances, and is called the Rayleigh-Synge cri-

terion.

The success achieved by Taylor (1923) in applying Rayleigh's criterion to

account for the appearance of streamwise vortices in circular Couette flow sug-

gests that strong streamwise vortical structures might be produced in a curved

mixing layer by making the inner stream heavier or faster, as indicated by the

Rayleigh-Synge criterion. That is, the effect of velocity can be supplemented by

the effect of density. Accordingly, streamwise vortices might be expected to

dominate a curved flow whose inner stream is heavier. However, such a flow may

also be subject to Rayleigh-Taytor instability, as argued earlier, with generation •

of three-dimensional structures.

As far as two-dimensional spanwise disturbances are concerned, the existence

of an inflection point in the velocity profile of a general mixing layer suggests I

the continued relevance of Kelvin-Helmholtz instability. Extensions of Kelvin-

Helmholtz instability to gravitational flows involving discontinuous velocity

profiles and density differences have been discussed by Chandrasekhar (1961) V

!S
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and Drazin and Raid (1961), who showed that in the limit of equal velocities

Kelvin-Helmholtz instability reduces to Rayieigh-Taylor instability.

The three inter-related instability mechanisms can be distinguished upon

inspection of the vorticity equation.

=p(W.V)u + -(Vp xVp)+ V +-Vpx (V2u) (1.5.1)

which is valid for an incompressible flow (i.e., dw u = 0) with constant viscosity

As explained by Batchelor (1967), the Kelvin-Helmholtz instability Is associ-

ated with convection of vorticity, represented by the first term on the left-hand

side of the vorticity equation. The Taylor-G6rtler instability, associated with the

tilting of vorticity according to Coles (1967), is connected with the first term on

the right-hand side. The Rayleigh-Taylor instability, associated with the produc- L

tion of vorticity when the density gradient is not parallel to the pressure gra-

dient (Scorer 1978), is connected with the second term on the right-hand side of ;

the vorticity equation.

Unfortunately, the vorticity equation is coupled to the equation of momen-

tum and the equation of continuity. It is therefore difficult to draw solid conclu-

sions regarding the relative importance of the individual driving mechanisms;

i.e., density gradient, velocity gradient, and streamline curvature, without taking

into consideration the whole set of governing equations simultaneously. This

problem will be attacked in the next section. L_

. . . . . .L._
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EL Mlgebimic Sbability Arguments

2.1. Aibric Formulation of the Stability Problem

In this section we will attempt to characterize the three instabilities

described above, and their combinations, without reducing the differential equa-

tions of motion to a formal eigenvalue problem of the conventional kind. The

analysis will move in the conventional direction at first, in the sense that we will

assume laminar flow and will consider the linearized problem of small perturba-

tions to a particular basic flow. However, the machinery which is eventually

used to extract practical results will be algebraic rather than analytic. This

machinery will be developed as soon as the mathematical problem has been

properly f ormulated.

The fundamental physical laws governing the flow structure are conservation

of mass and conservation of momentum. Density changes will be associated

with the presence of different fluids, rather than with effects of heat transfer or

compressibility. Thus no energy equation is required. In fact, useful results can

apparently be obtained without using equations for diffusion of species. In such

a case there are two equations of continuity,

V.u =0 (2.1.1)

and

-,-



PD= (2.1.2)

For simplicity, because the eventual application is to turbulent flow, the viscos-

ity (but not the density) will be taken as constant; i.e., independent of position.

The momentum equation is then

PDuL 2L + (U -V )U -V +jV uU (2.1.3)

where V Ou div(grad ui). The transport equation for vorticity w V x u is

obtained by taking the curt of the momentum equation (2.1.3) after dividing by

p. A useful vector identity is

V x(sv)=s(V xv)+Vs XT (2.1.4)

where s is a scalar and v is a vector. The result for vorticity is

Do a

=P(W.V) U+L;Vp XVP +sVbO+ -VPX V'U (2.1.5)

The terms on the right-hand side represent vorticity changes caused by vortex

stretching/ tilting. by baroclinic (pressure) torque, by viscous diffusion, and by

exoclinic, (viscous) torque.
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We want to examine these equations in cylindrical polar coordinates (r, e, x).

The velocity components will be denoted by (u, v, w) and the vorticity com-

ponents by ( 0 7. ). The equations of continuity become

OU + + + w 0.(2.1.6)

+ _ + +W o (2.1.7)
at Or r Be as

The three components of the momentum equation become
t

2!L U 2L+ L 2! + u =-JL+A &U !L-(2.1.8)

p A-+ at+,t + = -O + + (2.1.9)

pO + 2 + -- -+ W E- + +A V 2. (2.1.10) L
at.Or r 00Ne a

where
ass, 1 at 1 ass ats 1•
u 2___71 +8 ;7 +. 71 Ta +~ 8.2F(.1



The vorticity equations, although formally redundant, will be used in what tot- 0

Iowa to avoid dealing directly with the pressure. The three components of vorti-

city are

I Ow- e (2.1.12)

17A (2.1.13)

1. I~u (2.1.14)
rOr r Of

and the three components of the vortieity equation are

a-+ U2L+ a-Ot.

PL

... .... .7..
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pt Or rr O9 asMV?~!14 ~

=P ~ ~ i 2!L+1 M .1++Lp_ o_+' m

+ ou~1hi R W 2..8

tN +L2!+ + 1 OP 2L L

+ r Trae r ae r2~ rR aJ (2.1.17)

P2. The lhnearizd Problem

An inquiry into the stability of a fluid motion normally involves a basic flow

subject to small perturbations. The basic flow which is appropriate for the

present problem is a spatially growing mixing layer. The perturbations should

also be assumed to grow in space rather than in time. The resulting problem,

however, is too difficult to treat by the methods used here. Instead, the mixing



layer will be taken as a static flow which grows neither in space nor time, and

only the condition of neutral stability will be sought. This restriction is not

necessary. If, for example, it' f(r) exp[ta(z -ct)], then u'At = aciu,

and a suitable generalization of the algebraic method is straightforward.

In practice, there are two important perturbations to be considered. One

corresponds to Taylor-Grtler instability and requires a disturbance periodic in

the axial direction. The other corresponds to Kelvin-Helmholtz instability and

requires a disturbance periodic in the tangential direction. The third or

Rayieigh-Tayior instability will appear as a bridge between these two inital ana-

lyses.

After this introduction, we choose the basic flow as essentially a circular

Couette flow having fluid rather than solid walls. In particular, this basic flow is

steady, two-dimensional, and axisymmetric;

a :0 (2.2.1)

U =f(r) (2.2.2)

9=0 (2.2.3)

where the overbar can be understood as denoting a temporal mean value, in

anticipation of the later application to turbulent flow. If the density is not con-

stant, the mean value is also assumed to depend only on radius;

(2.2.4)

h

L__
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The radial and tangential momentum equations reduce to

(2.2.5)
dr r

and

drg r dr R 0 (2.2.6)

respectively. The mean vorticity has only a tangential component;

?=O (2.2.7)

I.0= (2.2.8)L

L dr)(2.2.9)

For classical circular Couetts flow, which is precisely described by Eqs.

(2.2.5)-(2.2.9). the integral of Eq. (2.2.6) is often written

=A r +(2.2.10)

where A and B are constants determined by the no-slip condition at the two

cylindrical wails. The vorticity ?=drUA*d is
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=2A (2.2.11)

and the angular velocity 0 =,U,+ is

TA =A + (2.2412)
7g

The approximation adopted here is that the shear layer is equivalent to a

Couette flow except that there is irrotational flow on both sides of the shear

layer, with

= B. B~(2.2.13)
r. r

Now Let small disturbances be superposed on the mean flow defined by Eq.

(2.2. 10), thus

Us = Is (2.2.14)

a, =47(r) +aV (2.2.15)

Wi,=Wa (2.2.16)

P =PHr +P (2.2.17)
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p =ja(r) + p' (2.2.18)

"as- (2.2.19)

17 '(2.2.20)

C,?+ LhL t+ C(2.2.21)
r Or rI

Ljnearize the equations of motion, and subtract the terms representing the

mean flow. The result is, for continuity;

O" + L h -- + o-0 (2.2.22)
a r re as a

kL+I 9+2e m- + -9L !LL t 2L= 0 (2.2.23)
at dr Or r 8e r 8e as

for momentum.

O -r a ' rU' - -r+ Ov 2 (2.2.24)

IJJP-+/ 1,'. .

II
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t rfee +f 24 a,,, (2.2.25)

-E A~r v owl (2.2.26)

and tor vorticity;

let. (2.2.27)

+ Ju[VI? .iL.+ 2 Ot] + (~+ 7~ 2wc, (2.2.28)

£~ae LtrL~h + Ld

where
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Ds, 1 os' 1 Os' a s'3
Rs- 8 7  ;7 -- -- 0 i-2 (-.0

and

= a ' (2.2.31)
a te - O

I

O, 8' (2.2.32)

t

I.8_.u') - o (2.2.33)
O or r e

The linearization assumes ' << and p' << AIS, because the two variables V

and I are specified by equations of lower order. However, there is no informa-

tion available about the density, and the linearization therefore does not yet

assume p' << A in Eqs. (2.2.23), (2.2.28), and (2.2.29).

Eqs. (2.2.22)-(2.2.33) will be specialized for individual problems and will be

used repeatedly in the rest of our discussions.
L..

P.3. The Algebraic Model

We will now argue that it is possible to gain some useful physical insight into

the mechanics of the motion in the shear layer without undertaking a solution

of the formidable equations just derived. The argument is an extension of a

method developed by Coles (1967) for the case of circular Couette flow.

Specifically, the objective is to replace the differential equations by algebraic

equations which are in some sense equivalent. This process might be referred

-,I
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to, somewhat facetiously, as "D/A conversion." For the most part, the equations

should be read almost like Fortran statements; i.e., the meuning of the symbol

= is essentially that the quantity on the left can be replaced by the quantity

on the right. The method is considerably more than dimensional analysis, 0

because it succeeds in establishing interactions between various dimensionless

parameters by retaining the main physical content of the equations. At the

same time, the method is considerably less than a formulation of an eigenvalue

problem. The results obtained are useful mainly as formulas for interpolation

and extrapolation. Because the method is heuristic, it has to be used with care.

In particular, the derivation is not unique. There Is some ambiguity in signs,

and an occasional empirical constant is needed to obtain a plausible result. A

slow beginning and considerable practice with the method are in order, and

different aspects of the method will therefore be approached in order of increas-

ing difficulty. Various rules of the game will be established as they are required.

8.4. Tayior-W rtlw Insabfity Constant DleAty

We first consider the neutral stability of a curved axisymmetric mixing layer

subjected to axisymmetric disturbances. Thus = 0 for both the mean flow

and the perturbations. The secondary motion is expected to consist of stream-

wise vortices which are periodic in the axial or z direction. Each vortex is

approximately square in cross section. The condition of neutral stability will be _

imposed by assuming steady flow, -L0.
at

To illustrate the method, we begin with the case of constant density. There

are six dependent variables; u', a', ud, p', , . However, the pressure can be

bypassed, so that five equations suffice for the argument. They are the con-

tinuity equation,

I__-
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+ !L+ -o (2.4.1) .

the tangential momentum equation, which does not contain the pressure;

I

N' V IV - "'(2.4.2) "

the tangential vorticity equation;

Awl =,r' .,. IS[V' + ' -,_ (2.4.3)

and the two definitions

-..(2.4.4)

8.'

&W ow (2.4.5)if: Os r

Before any approximations or substitutions are made, it is convenient to

revise Eq. (2.4.3) by noting that

-A C. 25O (2.4.6)

Half of the term on the right-hand side of (2.4.6) originates in rotation of the

unit vectors, and half originates in the vorticity-tilting term.
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Consider the continuity equation (2.4.1). Let Vs and w' be replaced byvelo- 1

city scales U and W, respectively, which are taken to be positive constants .1

and which play somewhat the same role as eigenfunctions. In a similar spirit, let

derivatives like 8Or, a8R'4 be replaced by 11L and 1/L. as required, and let

derivatives like Ms. 82Axh be replaced by 1A and 1AA. Finally, assume for

simplicity that the curvature of the flow is small enough so that terms in 1k.

or 1,+9 can be neglected except in the zero-order terms which determine the

basic flow. When signs are taken Into account, the continuity equation is con-

verted to

U V

L A -(2.4.7)L. A k .

The radial and axial scales L and A are probably best visualized as charac-

teristic radii of curvature for the profiles in question. If the circular-Couette-

flow model is taken seriously, these two scales in the r and x directions

should be very nearly equal. They will eventually be determined by comparison

with more rigorous analyses where these are available. For the present, we

assume only that the scales L and A are proportional to the corresponding

physical scales (d or 6, say, in the case of L; A, say. in the case of A), with

the same constant of proportionality. Hence Eq. (2.4.7) provides one relation-

ship between the velocity scales U and V.

We propose to model the Laplace operator V in Eqs. (2.4.2) and (2.4.3)

using two positive constants, a and b, in an effort to provide enough flexibility

to cope with the different effects of free or solid boundaries on the profile curva-

ture (see Eqs. (2.4.15) and (2.4.20) below);
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+ & 1 F LI (2.4.8)

We now stipulate, as an implicit rule of the algebraic method, that an effective p

coefficient of unity should appear before each term representing a particular

physical process, unless a different coefficient appears in the differential equa-

tions. When this rule is applied by requiring the expression (2.4.8) to reduce to

the form V = ILI' when L A = 1, it follows that

a + b =1 (2.4.9)

If we somewhat arbitrarily associate constants like a and b with the process

of differentiation rather than with the variable being differentiated the

definitions (2.4.4) and (2.4.5) are modeled by equations which call attention to

the problem of ambiguity in sign;

V= -(2.4.10)
I-_

Note that the curl operator was applied once as curl u in generating Eq. (2.4.5)
and thus Eq. (2.4.11). On the other band, the Laplace operator in Eq. (2.4.8)

began life as the vector operator div def u, or equivalently - curl curl U. Prob-

ably because the scales L and A are automatically raised to the proper

powers, it seems to be sufficient to use the same constants a and b in both

cases.

4 . _ 1 + _ .. . il + :. . A+ _- _.. . . _" I " . 1 . . . . . . . . . . .. .. il " l- .+p_ in l
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The two dynamical equations (2.4.2) and (2.4.3) now become

LI~

and

-2 V=I I "'&-'s + LO (2.4.13) .

These are hybrid equations. The quantities 0 and are still formally func-

tions of r and will eventually have to be replaced by equivalent global con- I

stants characterizing the whole layer. Even without this replacement, the last

two equations (2.4.12) and (2.4.13) become in some sense an algebraic abstrac-

tion of the eigenvalue problem. They are homogeneous in U and V, and the

determinant must vanish if a meaningful solution is to exist. That is,

'.- = ' r . (2.4.14)

The combination of variables on the left in Eq. (2.4.14). one form of the Tay-

lor number. Rayleigh's inviscid criterion, that the product D ? (or the deriva-

tive d (i4'2)/r) must be negative for instability, is replaced by the criterion

that the product I ( must be more negative than a specified constant which

depends on viscosity, scale, and cell geometry. The expression (2.4.14), with

LA = 1, was originally used by Coles (1967) to show that the effect of geometry

can be suppressed for circular Couette flow: i.e., that the two main portions of

the stability boundary can be expressed each as a function of two dimensionless

variables rather than the usual three.
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Circular Couette fow is normally characterized by solid wails, or hard boun-

daries, at which a no-slip boundary condition is applied. For rotation in the

same direction, which is the case of interest here, the minimum critical Taylor

number is known to occur for essentially square cells; i.e.. for LA = 1. In order

for the right-hand side of Eq. (2.4.14) to have its minimum when L/A = 1, it is

necessary that

a -2b =0 (2.4.15)

It follows, in view of Eq. (2.4.9), that a =243 and b = 1/3. Thus, finally,

,'L2

-2DIL 1 As (2.4.18)
JAS [2'

It remains to determine how well this expression represents the effects of cell

geometry on the stability boundary. Chandrasekhar (1961, p. 303) recommends

a narrow-gap approximation which can be written in the present notation as

11A

gpWL id A2
L4 = iT 1 + ̂ .j(2.4.17) .-._

where : 2A., as in Eq. (2.2.12), with A < 0. and where - = (w), + w)/Z. The

gap is d = r - rt. When we require the minimum critical Taylor numbers to

coincide in Eqs. (2.4.16) and (2.4.17), we find that

_I_

1i
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1715 [ -=1 or 2 -- 0.155 (2.4.18)

where X is the axial wave length.

Equations (2.4.18) and (2.4.17) are both of the form

T= - fn = + (2.4.19)

The two versions are compared in 1g. 2.1. The agreement is excellent (within

about one percent) for 2dA from zero to about unity, but deteriorates for

large values of 2dA. where the asymptotic behavior is correct but the

coefficient of the leading term according to the present model is about 20 per-

cent too small.

A better approximation to a shear layer would be circular Couette fow with

soft boundaries, at which a stress-free boundary condition is applied. This prob-

lem has apparently not been considered in the literature. However, an analo-

gous problem is Benard convection with two free boundaries. For this case the

cells are known to be rectangular at the minimum critical Rayleigh number,

with 2dA = 1/V2 (Chandrasekhar, 1961, p. 36). If the right-hand side of Eq. m.
(2.4.14) is required to have its minimum for L/A = 1/, it is necessary that

a - b = 0 (2.4.20)

so that for this case a b = 1/2 and

*. . . .. - . - . _ . .. . . : .; , - _ . . . : :: : . . . .. . . . , '
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In the present notation, Chandrasekhar's exact expression is

T2 A2A : ,(2.4.22)
is L'J^L'J ::

Comparison of the last two equations shows that

dL 1 L_ 2A=o.8
3 d or 2 0.189 (2.4.23)

The final result in both cases is the same;

2A#~~.C.,)1 +f~(4 ~ (2.4.24)

That the present estimate is exact is not entirely an accident. It helps to know

the right answer. The form of the exact result was anticipated in choosing the

signs in Eq. (2.4.11). although the signs are also consistent with solid-body rota-

tion. The result was also anticipated when the same coefficients a and b were

used in Eq. (2.4.8) and in Eq. (2.4.11).

Equation (2.4.24) is included in Fig. 2.1. The effect of the soft boundary con-

dition is felt in the reduction in the critical Taylor number and also in the relax-

ation of the radii of curvature L/d and AMI when ftttr is not required to

vanish at the boundaries.
I

.7-7
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z.5. Tayma-GIttiu litr DI~wmt Denusi
We now attempt the caue of variable density. The pressure p' and density P'

become variabls, and seven equations are needed for the quantities

V. V*t. p', p. . if. With curvature terms omitted, six of these are continuity.

-- + -~-= 0 2.5.1)

ie 9' t AL u =o (2.5.2)dr Or f

tangential momentum;

pN ZjV'i/(2.5.3)

and tangential vorticity;

+ /A IV. +k-+ V 2w (2.5.4)

together with the two defintitions (2.4.4) and (2.4.5) as before. Once again, the

pressure can be bypassed, because the axial momentum equation,

0 +'" P-W-(2.5.5)

AsL
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immediately permits cancellation of the combination

k --+ + 1AP-' "

in Eq. (2.5.4), which becomes

df + 1 (2.5.8)

The various steps taken to obtain Eq. (2.4.14) may now be repeated to obtain

V2 a? + L + -b (2.5.7)

There is one new baroclinic term which has so far not been processed. To bring

thi, term under control. we drst replace d)p, by p',. according to Eq.

(2.2.5). The derivative @p'A can be estimated with the aid of Eq. (2.5.2),

which implies that derivatives of mean and fluctuating densities are of the same

order:

u u w u (2.5.8)

Hence

tL4•. -2

10 = (A +6 (2.5.9)V L IC-
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We now require our analysis to include Synge's generalization (1933; see also

the argument in Section 1 above) for variable density of Rayleigh's inviscid cr-

terion d (r2U')Alr =0; namely,

The corresponding inviscid limit of Eq. (2.5.9) is obtained by setting the quantity S

in parentheses on the left-hand side equal to zero. For Synge's criterion to be

recovered, it is necessary to put

v=?L (2.5.11)

where it is understood that ? (and 5 below) should eventually be replaced by a
suitable mean value for the layer. This relationship essentially defines V. The

other two velocities are also defined, because from Eq. (2.4.12)

= 2 (2.5.12) L

and from Eq. (2.4.7)

= :w Q + bL (2.5.13)

The fact that the last three equations emerge from the analysis only when the

density is allowed to vary is a consequence of the inhomogeneity of the more

general system.

I-
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At this point the stability criterion, with part of the radial dependence not yet

removed, is

[21 + V2.~ =Af +6 L2(2.5.14)

M'I pRd L [a 2

where R is a mean radius. This expression (2.5.14) can be interpreted as a

relationship between frequencies or times. The prefix p2L'/s is the square of a P

diffusion time. The quantities D and are rotation rates. The quantity

(W7',pR) drPAI is the square of a Brunt-Vasila frequency, with the variable

body force per unit mass dpPdr = 070fr playing the role normally played by the

gravitational acceleration g.

Finally, we note that a positive radial density gradient d~o > 0 is stabiliz-

ing, because it moves the stability boundary to higher (absolute) magnitudes for

a and/or ?, other things being equal. A negative radial density gradient can

destabilize a flow (for example, irrotational flow) which would be stable for con-

stant density. These observations will be important in the interpretation of the

experimental data of the present research in Section 8.

2.6. KAvin-Hdmboltz nstability. Constant Deinsty

Consider next the Kelvin-Helmholtz instability, for which the secondary

motion is periodic in the 9 direction and two-dimensional (w = 0, 8/, = 0).

For the case of constant density, the dependent variables are t', V', p' ,C, and

the four equations required, with curvature terms omitted, are

- --- 0 (2.8.1)
Or OX
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~ ~] ~ 8(2.6.2)

+ d (2.6.3)

at' Oi

= .- (2.6.4)

where dw is written for r d e. Note that the term in dA r is retained in Eq. ..

(2.6.3). in spite of the fact that the derivative vanishes for the basic profile

(2.2.10). The reason is that this is the term which incorporates the extreme sen-

sitivity of the flow to the presence of an inflection point in the mean profile.

The secondary motion, and the methods used to describe it, are quite

different from the ones of the previous section. We anticipate a long, thin cat's-

eye pattern, periodic in the a - or z-directon and .--ationary in a coordinate P

system translating with the phase velocity c. The nonsteady terms are disposed

of by observing that any function g, say, which depends on the composite argu-

ment (z - ct) satisfies 89PDt + c a80f = 0. Hence

+-g~ f-(' - C)f. (2.6.5)

In the continuity equation, the derivatives 8.4r and 8.4z are not expected to

have the same scale, and are again represented by 11L and lA, respectively,

as in the case of the Taylor-GUrtler problem. The pressure perturbation can be

left unattended in Eq. (2.6.2). We represent the continuity equation by

I-

• . . . . -. '-. . .. . . . . .
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K1L -L-

-- = -- (2.6.6)
L; A

but we choose to use different constants in the Laplacian and in the axial vorti-

city;,

v A = + L2 _ , + (2.6.7)

and

a Y bU =U A abLa(.68
A L2 L(2.8

with no constraint on a, b, A, B for the present except that these quantities

are all positive. There is obtained

,4U + /. a + 6 = i, A+b + B ] (2.6.9)

This equation is intended to characterizes the Kelvin-Helmholtz instability

without second-order curvature effects, although these could be included with a

little more effort. The two quantities d?/dr and (V - c) have to be disposed

of. The first can be treated normally, say by putting

d-- --- (2.6.10)

where V = (V, - 7t). The quantity (V - c) is antisymmetric about the

" % .. - ." Z .° • "o 
°

.
-

" . .. • -.
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mldplane: it is measured by (lU. - c) on one side and by (c - Ot) on the other. P

An estimate will be made in Section 7 of the celerity c, showing how this quan-

tity depends on density ratio. In the meantime, (U - c) should be well enough

measured by its arithmetic mean. (0,* - 17)/Z. and we therefore put

- A_ (2..11)2

t

The sign in Eq. (2.6.11) is chosen to be negative, in anticipation of the fact that

the left-hand side of Eq. (2.6.9) must vanish when = O. At this stage, Eq.

(2.6.9) has become
I

-LA L2
S[At - b L + 2 (2.6.2) -

There are several constants to be accounted for; a. b. A, B, L. One well-

established property of the neutral stability curve, at least for a mean profile

given by a hyperbolic-tangent function, is that the flow is stable if

6~f-f ) 1 (2.6.13)x A

when 6 is defined as the maxdmum-slope thickness (because the cells are not

counter-rotating, there Is no factor of two). We want our algebraic model to

reproduce the asymptotic form of the stability boundary near the upper branch

(Drazin and Reid 1981, especially Fig. 4.28 and Prob. 4.13); i.e.,

Re (-a) 8ff (2.6.14)

L__

S. |
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Note that the Reynolds number Re =PAC 64A used here is larger by a factor of

four than the Reynolds number used by Drazin and Reid. Let Eq. (2.6.12) be

rewritten as

"o .

(a6.6 a,

QL~~ a e 
. .

NTe lethand sde ilreoducer ote --orm Red r -s a) rovi e byhat for

and the right-hand side (with a=1) will then reduce to the constant e(- pro-vdt

vided that

s-: B = L. (2.6.17)

and the value of the wave number a for which it occurs. For the temporal

problem, with a hyperbolic-tangent profle. Betchov and Szewczyk (1963) found a 7
neutral boundary passing through the origin. Thus there was no finite minimum

critical Reynolds number and no lower branch. Lessen and Ko (1966) used the

Blasius profile and found a minimum Reynolds number of 9.1 (i.e., 3.6/.395 when

the thickness 6 is rescaled to put the asymptote for the upper branch at
1at = 1) at a wave number of about 0 .13 (i.e.. 0.05 /.395). The analytical evidence

In therefore unclear at this stage of the arg~ument. L_

. . . . . . .
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We need some estimates. Suppose that we require a balance between the two

terms in Eq. (2.6.8) which contribute to the vorticity by assuming a = b. as in

the case of the Tayior-Gortler flow with free boundaries. It then follows from Eq.

(2.6.16) that -

a =b (2.6.18)ff2 + i-

and from Eqs. (2.8.15) and (2.8.17) that

16,r(ff2 + a2)(A + Bas)
= (r2 + 1)(w2A + B) a (1 - a2)  (2---

This expression has only one disposable constant, the ratio B/A. It turns out to

be possible to choose this constant so that both the minimum critical Reynolds

number and the corresponding wave number agree well with the results in Fig. 3

of Lessen and Ko (1966). The condition for a minimum is

B 4(1 + a2a (2.6.20)-= 1 - ,re + (,re + 3) -a

If we estimate a = 1A4 (i.e., close to 0.13), then B/A is nearly 64w 2 >> 1, and

Re from Eq. (2.6.19) is about 4wr. These values for a and Re are satisfactory.

As the last condition to be imposed, we choose the same one used to measure

the magnitude of the Laplacian for the Taylor-G6rtler problem; namely,

A + B 1 (2.8.21)

Given that B is nearly unity, and much larger than ert A, Eq. (2.6.17) becomes

• . . - o • • • •. , ... .
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approximately LA = lAb = (,r' + 1)Afr', or about 1/8. This value is also satis-

factory.

After some experimentation, the values a = 0.097, B/A = 1006, Re = 9.0,

A = 0.001, B = 0.999, and LA = 0.139 have been used to construct the stabil-

ity boundary which is compared in Fig. 2.2 with the boundary proposed by

Lessen and Ko. The fit is at least amiable, in view of the difficulty of the prob-

lem.

The results just obtained need some discussion. The enormous discrepancy

between the constants A and B seems at first to be against nature, especially

since the algebraic representation for the Laplace operator in Eq. (2.6.7)

reduces in the limit A -. 0 to the form 8O' ft . rather than the form *'Ay2

which would emerge from a boundary-layer approximation. Note that the for-

mula obtained from Eq. (2.6.19) with A = 0; namely. "

Re 1(1 + (2.6.22)(ff + a)( -) i

requires the curve Re (a) to pass through the origin. The lower branch is lost.

as in the calculations by Betchov and Szewczyk (1963). Their results are com-

pared in Fig. 2.2 with the curve defined by Eq. (2.8.22); note that the latter equa-

tion, unlike Eq. (2.6.19), has no adjustable constants.

The relative magnitude of the terms a?',Az2 and aP?'Ay is not discussed

by any of the authors whose stability calculations have been cited. However,

this question can be studied in terms of Stuart's closed-form expression (1967)

for an inviscid motion of the type considered here. Stuart's stream function for

perturbations of small amplitude is of the form
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cos Z (2.6.23)-" 0o5h Y

so that

[, Csl (2.5.24)

±L= C. 2 9sinh .+ sinh' (2.6.25)OV2 cs cosho y

t

Our algebraic approach deals with characteristic values for the whole layer,

values perhaps best visualized as integrals from y =0 to y - -, say. Because

k**y vanishes at infinity and also at y = 0 for the asymmetric tanh profile,

the integral of O'eA' is zero, whereas the integral of 82r',Oz is irA. We

believe that this observation explains why Betchov and Szewczyk, working with >1
the hyperbolic-tangent profile, found no lower branch (A 0 0), whereas Lessen

and Ko. working with the not-quite-asymmetric Blasius profile, did find a lower

branch and a minimum critical Reynolds number (A = 0 but A << B ). This

behavior suggests a singular-perturbation problem. There is a non-uniform vali-

dity of the neutral boundary for long waves or small a. The lower branch is a -

boundary layer, and is lost when one of the highest-order terms in the equations

ceases to play a role. It is because of the exquisite sensitivity of the minimum

critical Reynolds number to the departure of the basic profile from perfect anti- ml.
symmetry that we have chosen to emphasize wave number rather than Reynolds

number in our fit to the analytic results obtained by Lessen and Ko.

i L--

.. .. . - -.- .. . .. . . .- . .. -...-.. .. - .-. • .. .• . . .. _.
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.7. Kutivt-Hdm otzabilt DiffarUit DemiUeM

The last and most difficult element of the algebraic method is inclusion of the

effects of a density difference in the neutral-stability condition (2.6.19) for the

Kelvln-Helmholtz problem. The new variable is p'. making five dependent vari- !

ables in all. The new equation Is the linearized continuity equation. Eq. (2.2.23),

which is most conveniently written as

~ 2.J+(a) 0- (2.7.1)

The linearized equations (2.6.1). (2.6.2), and (2.6.4) are unchanged, but the

spanwise vorticity equation (2.6.3) becomes much more complicated. With cur-

vature terms omitted, this equation is

V IC-  Lk AL. o,

+ $A-.Vs ] aw 0- + M=.%jI:C+. P j (2.7.2)

The transformation to moving coordinates according to Eq. (2.6.5) has already

been carried out. When various variables are replaced by constants according to

Eqs. (2.6.8)-(2.8.11), but no other steps are taken, Eq. (2.6.12) becomes

!. -LI Lc + b LI, [+B , p'A'U ft ....
"A 2 A L

4-
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| .r A-c.,

The pressure perturbation Op',flz in the third term on the right-hand side of

this equation can be eliminated with the aid of Eqs. (2.6.2) and especially (2.8.6).

With an appropriate choice of sign.

= 1 L (2.7.4)
ft 2 L

Note that this term represents a vorticity source which is partly baroclinic and

partly exoclinic, according to Eq. (2.1.5).

The baroclnic density perturbation 0p'A'z in the second term can be elim-

inated with the aid of Eq. (2.7.1). With an appropriate choice of sign and with a

disposable constant k inserted to allow adjustment of the gradient Richardson

number toward the critical value RL 1A, the relationship wanted is

k (2.7.5
ft k dr r)

The other constants of the problem have already been assigned specific

values, either in Eq. (2.6.18) or in the preparation of Fig. 2.2 for the case of con-

stant density.

Suppose now that the derivative 4p'.#r in Eqs. (2.7.3) and (2.7.5) is small

compared with 8/#r. The rationalization proposed here is that each fluid is

confined mainly to one side of the layer in a cat's-eye pattern, rather than circu-

lating freely from one side of the layer to the other, as in the case of Taylor-

Gortler cells. In the event that the derivatives are actually of the same order,
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the rules of the algebraic method require them to be treated together and com-

bined into a single term.

Finally, it is necessary to account f or the last term in Eq. (2.7.3). This viscous

term represents the remainder of the exoclinic vorticity source in Eq. (2.1.5). If

the two contributions are of the same nature and the same order, it is sufficient

to keep only the first. After replacing 8j~Or by (AAL)8p'Gz and using Eq.

(2.7.5), our conclusion is that this term is of the same order as terms which

appear for the case of constant density and should not be neglected.

At this stage, the left-hand side of the generalization of Eq. (2.6.12). with

pU'/R substituted for dp~it and (temporarily) MAW~ substituted f or 4471L.

has become

__ C'/IR 1 i

or, after multiplying through by 242 - a) ir + 1.

11 -L [~..kfz1 -(ff '.I1) Ri-A2]+1

where

I7'4?RI L 0- tO(.76
(dd'* (czj5 d)' (2.7.8)

is the Richardson number and N is the Brunt-Wisfili frequency. The sign is

opposite to the one normally found because the body force here is in the direc-

tion of increasing r rather than decreasing r.



For large Reynolds numbers, the upper branch of the neutral stability boun-

dary has an asymptote which can be obtained from

,s 1 -k(f.+ ,..)R I - O'g+ 1) (2.7.7)i2

If the last term is ignored for the moment, as in most dicussions of the for-

mal eigenvalue problem, the constant k is determined by the condition that an

inviscid flow is unconditionally stable if Ri > I^ (e.g., Drazin and Reid 1981, p.

1% 327). Hence we put

k (2.7.8)

We have, finally, for the heterogeneous flow

16" (& + at) (A + B 2 S)-2

Re =(,= ) (2Z.7,.9)..":':

(,f2 + 1) (ff" A + B) a [1 - a-- -4R - = .

(need to discuss static case of Rayleigh-Taylor instability)

This result can be compared approximately with exact calculations by

Maslowe and Thompson (1971). These authors derived their density distribution

from a temperature distribution, and their calculations are for Pr = 0.72 (our

formulation corresponds to Pr = m). Moreover, a Boussinesq approximation

was made, with density variations being neglected except in the gravity term

which generates the Richardson number; i.e., the term in ,- d- in our Eq.
Ox dr

(2.7.3). For compatibility, the two terms in Apop should be dropped from Eq.

* .•.•. .-
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(2.7.9). Finally, the parameter J. of Maslowe and Thompson is the maximum S

value of the local Richardson number, but is presumably equivalent here to a

value based on the maximum slope of the velocity and density distributions.

With these reservations, neutral curves have been calculated for various S

Richardson numbers. They are compared with the curves obtained by Maslowe

and Thompson in Figure 2.3. The agreement is only qualitatively acceptable,

given the difficulty with small wave numbers discussed above in connection with

Kelvln-Helmholtz instability for the case of constant density. A serious problem

is that Eq. (2.7.9) requires the lower branch to be asymptotic to the line a - 0

as Re - independent of the value of MI.

I

p

I_-
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'1

MI. Rq pmomntal Facility and lnutrumuntatian

The experiments were conducted in the gas shear-layer facility designed by

Brown and Roshko (1971, 1974). Slight modifications were made to the nozzle

blocks and splitter plate in order to install the curved channel walls for this

experiment. The resulting configuration is shown in Fig. 3.1.

Two gas streams from bottles are brought into the nozzles through pressure

regulators, metering valves, settling chambers, and honeycombs and screens.

The two streams meet at the end of the splitter plate and there the mixing

layers start to develop.

Due to space limitations in the basic facility, the nozzle section used for this

experiment is non-symmetric. The splitter plate is curved for the first 10.8 cen-

timeters, as shown in FU. 3.2. The downstream part of the splitter plate (9 cm

long) is straight until It meets the sharp trailing edge, which is 0.01 cm thick

and subtends an angle of 4 degrees. To permit photography in two directions.

two curved channel walls, with radii of curvature 27.9 and 33.0 cm, respectively,

are made from transparent lucite plates 0.25 cm thick. The two curved walls are

hinged to the nozzle blocks and the gap is sealed with plastic tape.

To keep effluent gases away from the light path during flow-visualization

experiments, curved aluminum guide vanes connect the curved walls to the exit

port of the channel. With the splitter plate pointing at the center of the inlet,

, the curved test section is 5.08 cm high and 10.16 cm wide, with a mean radius of

curvature of 30.5 cm. The channel is 23 cm long and turns 43 degrees.
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The curved lucite walls were made by a heat forming process. An oversized

fiat lucite sheet (without backing paper) was clamped at the ends within a tour-

roller fixture, as shown in Fig. 3.3. The correct radius of curvature was obtained

by adjusting the rollers, which applied a pure moment to the center part of the

plate. The whole assembly was then heated in an oven and held at a tempera-

ture of 93 - 96 *C for ten hours to release the stress within the lucite material.

The center part of the product obtained was optically and mechanically satisfac-

tory and was cut out for use. -

Three bottled gases were used during this experiment. They are helium,

nitrogen, and a mixture of 67.2 percent argon and 32.8 percent helium by

volume. The first and second gases have a molar weight ratio of 6.999 and were

used for experiments with different densities. The second and third gases have a

molecular weight ratio of 1.006 and were used for experiments with equal densi-

ties. In both cases, the difference In index of refraction makes flow visualization

possible by shadowgraph or schlieren methods. During the experiments, the

test section is covered by two glass walls. The entire channel is then enclosed in

a tank and pressurized to four atmospheres by house air. The elevated pressure

provides high Reynolds numbers and enhances the difference in index of refrac-

tion which is exploited for flow-visualization purposes. Visual access to the test

section is provided through two round glass windows 19 cm in diameter installed

in the tank wall.

The experimental study emphasizes flow visualization. Conventional shadow-

graph methods were employed in some of the experiments, using the arrange-

ment shown in Fig. 3.4. Space limitations prevented installing mirrors at 45

degrees on both sides of the curved channel, as was done by Konrad (1976) and

Bernal (1981). As a result, only one 45-degree mirror was used, and the plan

view was exposed on a separate sheet of negative nlm inserted next to the
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curved channel. The experiments were carried out in absolute darkness and

were not very enjoyable. Several pictures obtained using this arrangement will

be presented in Section 5 below. The quality of the side-view pictures is good,

especially because of the short exposure obtained from a spark gap light source.

However, most of the plan-view pictures obtained using this arrangement are

poor. The close proximity of the plan-view negative film to the flow significantly

reduces the distance travelled by the light which has passed through the flow.

Hence less shadowgraph effect is obtained.

An additional incentive for development of a new optical arrangement was the

need to take motion pictures of the flow. It goes without saying that a movie

carries much more information about the motion than a still picture. With the

arrangement shown ih Fig. 3.4, however, motion pictures are not possible.

A double-pass focussed shadowgraph system was thus developed, as shown in

Fig. 3.5. An image of a short-arc light source is placed at the focal point of the P

sphiiericil mirro (focil d0iitidce 1270 difi). md parillal light ii directed into the

test section. Two flat mirrors are mounted inside the facility at the positions

where the negatives were located in the original set-up. These mirrors reflect

the incoming light so that it passes through the flow a second time and makes

conventional photography possible. The spherical mirror collects the returning

light and brings it to a focus. The flat mirrors are tilted slightly, by 0.15

degrees, so that the returning light is focused slightly away from the original

focal point. The separation of the two focal points allows a small flat mirror to

be inserted so that light is directed into the camera.

In contrast to ordinary photography, in which the object emits diffused light,

shadowgraph Images are mostly formed by undeflected parallel light. It is

necessary to position the camera lens as close to the small deflecting mirror as

possible, in order to cover the whole field of view with camera lenses

L-
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commercially available. However, the real image of the flow formed by the

spherical mirror is behind the camera. Camera lens mounts are not normally

designed for such an application, and cannot bring the image into focus without

some correction. In the present case the correction is provided by inserting a

negative lens (f - - 70 mm) in front of the camera lens (f = 25 mm). The focal

length of the camera lens is thus increased. In other words, the camera was

myopic. or near-sighted, until it was given the negative lens as a spectacle.

In the original shadowgraph method the negative film was placed against the

test-section windows, and the contrast was sometimes low if there was little vari-

ation in the gradient of index of refraction. In such circumstances the contrast

can be increased by placing the negative away from the test section, in order to

increase the displacement of the deflected light. The best location for the nega-

tive has to be determined by trial and error. In the present system the focal

plane of the camera lens is adjustable, and the contrast of the shadowgraph pic- --

tures can be varied by placing the object plane at a suitable distance from the

test section. Tests were carried out for several of the curved mixing layers.

Depending on the flow, it appears that the best location for the object plane is

not on the test section window, but at a distance of 10 to 20 cm on the camera L.

side of the window.

Flow conditions for our experiments are described by using the flow speed at

the nozzle exit as reference. Prior to each experiment, pitot-static tubes con-

nected to a pressure transducer (Datametrics Barocel, range 10 mm Hg) were

inserted into the test section to measure this reference speed. The mean-

velocity distributions across the nozzle exits were found to be uniform to within

one percent.

Detailed concentration profiles and dynamic-pressure profiles were also

measured for several of the flow cases studied. Gas aspiration probes used for

I__
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the concentration measurements were made as shown in Fig. 3.6. The basic

design of this probe is similar to that of Brown and Rebollo (1972). A glass

micro-sampling pipet (Corning, 10 microLiters) with an inside diameter of 0.4

mm is first pierced with a bright-hot tungsten wire to form a through hole nor-

mal to the axis of symmetry on the centerline. One end of the pipet is then 0

trimmed and fused, using a Bunsen burner, until the inner diameter shrinks to

about 0.05 mm and forms a small nozzle. The exterior of the nozzle end is then

ground to improve the slenderness ratio, and a piece of Wolaston wire (Pt-10% 9

Rh) is inserted into the through hole. After attaching conductors to both ends,

the Wollaston wire is etched by sucking nitric acid thorugh the nozzle with a

Venturi-tube aspirator to remove the silver coating. The etched wire in the con-

centration probe is 2.5 jum in diameter. The response time of the probe is less

than 0.1 msec. Overall accuracy of the probe after static calibration is within

one percent.

The same Barocel pressure transducer and pitot-static tube were used for

measurement of dynamic-pressure profiles. The variation of tunnel pressure

and fow temperature were monitored by a second pressure transducer

(Daystrom-Wiancko Model P2-1251, range 300 psig) and a thermocouple (copper-

constantan, 0.05 mm dia.). The Joule-Thompson effect caused the temperature

of the gases coming out of the high-pressure bottles to be generally different

from the bottle temperature. This temperature difference is especially

significant for the nitrogen used in our experiments. However, the pipelines and

reservoirs downstream from the pressure regulators provide a considerable

volume, in which the pressure is generally much lower than the bottle pressure.

Thermal masses associated with the pipelines also help to reduce the tempera-

ture departure. It was found that the temperature drop in nitrogen in our facil-

ity was less than 2*C if the running time at 4 atmospheres was shorter than 6

seconds and the mean flow speed was lower than 700 cm/sec. The temperature

,oio ..

. " .,.
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variation can cause errors In the concentration measurements through Its

effect on the hot-wire inside the aspiration probe. The same is t-ue for tank

pressure variations. Fortunately, the tank pressure was quite constant, and

minor variations of 0.3 psi are not harmful to the concentration-probe measure-

ments.

The concentration probe, the pitot-static tube, and the thermocouple were

mounted on a traversing mechanism during the profile measurements. The out-

puts of all the transducers were sampled by computer through an A/D con-

verter. The computer also controlled the motion of the traversing mechanism,

so that sampling was done only when the probes were stationary at predeter-

mined radial locations. During each run, 15 radial stations were traversed. At

each station. 4096 data words were obtained for the concentration signal and

for the dynamic-pressure signal at a sampling rate of 33.3 kHz per channel, with

the two signals multiplexed. Together with 16 flow-temperature and 16 tank-

pressure measurements interleaved with the high-speed data records, the whole

experiment ran no longer than 5.75 seconds. The information obtained was

stored on magnetic tape after the flow was turned off by the computer. The

profiles of mean concentration and dynamic pressure reported in Section 6 were

calculated from these data.

IL. I "
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I. Oramniuation of the EXPwiment

A two-dimensional curved turbulent mixing layer can be described by three

independent parameters. Theme are the ratio of inlet speeds. U-U the ratio of

densities. p.h and the geometric factor b1 R. where b is the half-height of

the channel and R is the mean radius of curvature, as shown in the sketch at

the beginning of Section 1. For consistency with the existing literature, the

notation used In the remainder of this thesis Is different from the notation used -

in Section 2 above. We will denote the streamwise (tangential) coordinate by x

and the normal (radial) coordinate by y. The z-component of velocity will be

represented by U or u, and the V -component of velocity by V or v.

End effects might be minimized by making the channel long enough so that

the mixing layers do not leave the channel until the two streams are well mixed.

However, due to large variation in flow parameters f or the various mixing layers

studied here, together with the limitation of space in the existing facility, this

requirement cannot be satisfied for some flows in which the mixing layers grow

too slowly. For this reason, none of the flow-visualization and profile measure-

ments of the present experiments covered more than the first 80 percent of the

flow field.

If viscosity is neglected, any mean flow property W can be represented by

the functional relationship

. . . ..°

(4.0-1

R b' U--.j'_
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The available speed ration are limited primarily by the flow capacity of the tun- -

nel at high speed and by unsteadiness of the downstream pressure-regulator -

valve at low speed. As a result, the range of speed ratios achievable is roughly

from 1/4 to 4. Three gases were used and gave three possible density ratios: 7,

1. and 1/7. Except for one special sequence of measurements, described in Sec-

tion 7.1, b R was fixed throughout the experiment at the value 1/12.

The flow conditions can therefore be represented on a two-dimensional plane

with -To as horizontal axis and as vertical axis, as shown in Fig. 4.1.

Capital letters are used as symbols to indicate the flow conditions selected for . -

this study. The flow conditions for these experiments are also listed in Table 1.

All of the experiments were carried out at 4 atmospheres. Pairs like B and B - I
are flows having the same speed and density combinations. The dashed line in

Fig. 4.1 corresponds to the condition p U = p, U9 . Flows for which high-speed

movies were taken are denoted by enclosing the flow symbol in a circle. Flows L 1

for which profiles of mean velocity and mean concentration are available are

denoted by enclosing the flow symbol in a square.

The floW R§byhldf ftttl iba, dGpld dti the flUid kitfl~tatic M-4oity anid A -

characteristic length scale, the thickness of the mixing layer. Neither of these -

two quantities can be uniquely determined in the present case. For a general

mixing layer composed of two streams of different fluids, the kinematic viscosity 1 ..

is not a constant. The mixing-layer thickness, no matter how it is defined, grows

with downstream distance. Hence there is a certain arbitrariness in any esti-

mate of the Reynolds number. If the kinematic viscosity is taken to be the aver-

age of the kinematic viscosities for the two fluids, and the characteristic length

scale is taken to be the visual thickness of the mixing layer 10 cm downstream

of the splitter plate, the Reynolds numbers in this experiment covered the range
1__

.4,.

- - . - . ._ _ _



1 X 108 7 x 104. Figure 4.1 and Table 1 are central to the discussion of the

experiment and are referred to frequently in what follows.
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V. Visual Cbaractwistic of Curved ing Layer

High-speed movies at 2000 frames per second have been taken of several of

the flows cataloged In Fig. 4.1. using the double-pass focused shadowgraph sys-

tern developed for the curved mixing layer and described in Section 3. A high-

speed camera (Hycam model K2054E) with a 25-mm tens was employed for this

purpose. Some of the pictures presented in this thesis are individual frames

from these high-speed movies. The rest of the pictures were obtained using the

traditional shadowgraph method. The latter pictures contain more detail in the

side view of the flow, due to better resolution and shorter exposure. The nega-

tive size of these pictures is 12.7 x 17.6 cm, while the movie films are 1.6 cm .

wide, with actual image size roughly 0.6 cm in diameter. A photographic mon-

tage of the various flows studied here is presented in Figs. 5.1(a)-5.1(1). These

flows will now be discussed systematically, with one parameter in the discussion

changing at a time.

5. 1. Flow. With Uniform Density

The simplest case has a density ratio equal to unity. A picture of a flow with a

velocity ratio also equal to unity is shown in Fig. 5.1(e) (middle). The inner

stream is nitrogen and the outer stream is a helium-argon mixture which has

the same density as nitrogen. Both streams are flowing at 400 cm/sec at 4

atmospheres. Except for slight departures from uniform velocity as a result of

variation in the potential flow external to the mixing layer, the only major dis-

turbance in the flow is the wake downstream from the splitter plate. According

to the high-speed movies, the two sides of this curved wake behave differently.

There seems to be more activity on the inner side of the layer. The outer side is

, ...

. . . . . . .. . .,
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less active, and the outer pattern seems to convect downstream with little

change. The main role of the streamline curvature appears to be the introduc-

tion of instabilities of Taylor-Grtler type in the inner half of the mixing layer,

where the sense of the mean vorticity Is opposite to the sense of the angular

velocity. P

The problem is less trivial if the densities of the two streams are the same,

but the velocities are different. It is known for plane mixing layers that the

structure is roughly anti-symmetrical if the density is constant; see, for exam-

pie, Konrad (1976). When the velocity difference is large enough, the wake of the

splitter plate becomes less important, and the principal source of instability is

the shear between the two streams. The Kelvin-Helmholtz instability associated

with the shear layer produces spanwise vortical structures which travel down-

stream.

For curved mixing layers with equal density, the flow pictures indicate the

persistence of the large two-dimensional vortices, provided that the outer

stream is faster. A photograph of flow , with U./Ct = 10004380, is shown in Fig.

5.1(h) (middle). A picture copied from one frame of the movie for this flow is

shown in Fig. 5.2, and a picture sequence is shown in Fig. 5.3. The two-

dimensional vortical structures are quite similar to the ones in the plane mixing

layer; of. Fig. 5.4, taken from Konrad (1977). The faint horizontal lines in the

plan view correspond to the edges of the large structures. These lines are used

in Section 7 as references for determining the spacing and celerity of the struc-

tures.

These vortical structures appear to be much less two-dimensional If the Inner

stream is faster. Photographs of flow , with U./M, = 380/1000, are shown in Fig.

5.1(b) (middle) and Fig. 5.5. The difference between the vortical structures here

and in Fig. 5.2 is best seen In the side view. Several bridges (braids) can be seen

; '. . '.. .: .- .' / . . . . . .i ' -' i ' , . i i i i : / : i i i
. . , . - . . , .. .. . .
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lying parallel to each other in the right half of Fig. 5.5. This structure is cor-

mon throughout the high-speed movies taken of this flow. The implied loss of

two-dimenslonality might be associated with the mechanism described earlier

for the curved wake. In the present case, the vorticity and the angular velocity

are of opposite sense throughout the whole mixing layer, and the Taylor-Gortler

Instability Is probably responsible for the increase of three-dLmensionallty. The

three-dimensional boundary layers adjacent to the two side walls could also be

distorted by the curvature, and could contribute to the multiple bridges seen in

the side view. However, the streamwise velocity in the boundary layer Is smaller

than that in the free stream. Hence patterns due to side-wall boundary layers

would not be expected to be always moving along with the main structure, as is

the case in the movies of this flow.

A few adjacent frames from the movie for flow 7 are included in Fig. 5.8.

What is surprising is the profound influence of the curvature on the pairing

behavior of the vortices. It is known that the vortices undergo frequent pairing

in straight mixing layers. Pairing is also noticeable in Fig. 5.3, which is copied

from the movie taken for flow , in which UO/U 4 = 1000480. For the companion

flow 7, with Ul/U = 380/1000. little If any evidence of pairing phenomena can be

found. The details of the growth process cannot be seen clearly from the

movies. It seems that the interaction of the large vortices is three-dimensional

and is much more complicated than the usual pairing process. The vortices lose

their identity gradually, by interacting with their neighbors in a three-

dimensional manner, and there is a smoother overall spreading of the mixing

region, as shown in the associated still picture, Fig. 5.1(b) (middle).

...............................................
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5.. Flow ith Dlifmrent DAlMt

For curved mixing layers between streams having different densities, effects

of centrifugal forces come from two basic causes. One is the difference in velo-

city. Taylor-Gbrtler instability can occur when the inner stream is faster than,.

the outer stream, even in the cae of mixing layers with equal densities. The

other is the Rayleigh-Taylor instability, which can occur when the heavier gas is

on the inside. We begin with the simplest case of equal velocities and different

densities.

When the velocities are equal, we can simplify the problem by employing a

moving coordinate system attached to the mean flow. This coordinate system

rotates at constant angular velocity around the center of curvature of the chan-

nel, as shown in Fig. 5.7. In this moving coordinate system, the z-component of

the mean flow velocity Is identically zero. The equations of motion of the flow

can be written, neglecting.viscosity, as

p + 2fxu+ xX) Vp (5.2.1)

where 0 = IfI = U/f s the angular velocity of the moving coordinates, and X

is the position vector of the center of coordinates.

If we write down the x- and y-components of the momentum equation, we

have

2n (5.2.2)

D1 ex
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P 806 (R  (52.3) p

On assuming small perturbations, we have

P = - (5.2.4)

Dt 8 z

P O - - R (5 .2.5)

These are the equations of motion in cartesian coordinates for a flow subject to

a radial body force 0 OR. The approximation is valid if the effect of the wake of

the splitter plate is small.

In the moving coordinates, the system is statically unstable if the heavy fluid P

is on top of the light fluid; i.e., if the density gradient is opposite to the body

force. This situation is the origin of Rayleigh-Taylor instability. For curved mix-

ing layers in which the two streams have equal velocities, therefore, we can asso- -

ciate the flow with an equivalent static system in a gravity field. If the heavy

fluid occupies the outer part of the channel, the system is stable. A picture for

this case, flow U, is shown in Fig. 5.1(e) (top). Both streams are moving at 400

cm/see, with nitrogen on the outside and helium on the inside.

If the heavy fluid is on the inside, the companion mixing layer, 7, appears as

shown in Fig. 5.1(e) (bottom). Both streams are still at 400 cm/sec, but now

with nitrogen on the inside and helium on the outside. It is clear that Rayleigh-

Taylor instability plays a dominant role in this flow. It can be noticed from the

picture that the mixing region grows smoothly, with the growth governed mostly

. .
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by structures of small scale, rather than by the large vortical structures which

dominate the ordinary shear layer. Movies taken of this flow indicate that the

flow is quite steady, and there are few low-frequency fluctuations.

Even though no large-scale vortical structures are observed in this particular

flow, there still seem to be certain preferred structures having finer scales.

These fine-scale structures can best be seen in the plan view of Fig. 5.8. They

look more or lese like the cells in a kind of cloud known as 'mamma' (Scorer

1978). Movies taken of this flow suggest that these structures emerge from

roughly fixed locations on the splitter plate. Similar structures appear at about

the same time at all such locations. Both in the streamwise direction and in the

spanwise direction, these fine-scale structures appear to remain aligned with .

each other as they move downstream.

According to the flow-visualization results, the ultimate effect of a large den-

sity difference is a different kind of structure from either large spanwise vor-

tices or large streamwise vortices. The basic mechanism for the fine structures

is probably Rayleigh-Taylor instability. It should be noted that when a stratified

shear flow Is non-steady, local streamlines are in general curved and changing

with tme. It is possible that RayLeigh-Taylor instability can then also occur in

those places where the curvature of the streamlines and the density gradient

have the right combination, as proposed by Konrad (1976).

We have discussed up to now the simple case of equal density and the simple

case of equal velocity. There are two ways to consider the general case of curved

mixing layers having both a density difference and a velocity difference. We may

either add density difference to the flow with pure shear, or add shear to the

flow with pure density difference.

3-
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Since only three density ratios, 7, 1, or 1/7, were used in our experiments,

there are not enough results for presenting the effects of gradually increasing

density difference. We therefore follow the second strategy and consider the

general case by looking at flows with greater and greater velocity difference,

starting from the case of equal velocity.

If we begin with the case p / = 1/, i.e., inner stream heavier, and with

UlU = 1.0. and gradually increase the speed of the outer stream, the sequence

of flows is as shown in Fig. 5.1(e) (bottom) to Fig. 5.1(i) (bottom). The large

spanwise vortices become more and more pronounced. The three-dimensional

nature of these structures is best represented by Fig. 5.9. The streaks in the

streamwise direction in the plan view seem to have a preferred spacing. Experi-

ments carried out by Bernal (1981) on straight mixing layers in water have

shown that these streamwise structures in cross-section look like mushrooms.

Konrad (1976) argued that such streamwise vortices are caused by Taylor-

Gortler instability and are similar to Taylor vortices. Aryshev. Golovin, and

Ershin (1981) indicated that an instability of colliding streams can produce

streamwise vortices. Such a collision occurs near the internal stagnation points

of a shear layer according to Coles's model (1981) discussed in Section 7 below.

In any event, the spacing of such streamwse structures has been measured for

most of our flows from the movies and is a main topic in Section 7.

In the side view of Fig. 5.9 it can be seen that the bridges between the vortices

are relatively thick when compared with the straight mixing layer in Fig. 5.10,

taken from Konrad (1976). The thickening of the bridges is associated with

. senhanced three-dimensional motions. In Fig. 5.9 the pU2 product is the same

for both streams. The flow should therefore be neutrally stable to streamwise

disturbances according to the Rayleigh-Synge criterion defined by Eq. (2.5.10).

The enhanced three-dimensionality cannot be explained by considering free-

di .
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stream conditions alone, however. Because the local flow is nearly irrotatlonal
I

in the vicinity of the bridges, the velocity distribution is essentially continuous,

but the density distribution is not. Hence locally we have an unstable interface

due to mean streamline curvature and density difference. The Rayleigh-Synge

stability criterion is violated, because g- (pO) u2 d < when the heavier

gas is inside. The implied change in the characteristics of the flow can be prop-

erly accounted for only after a detailed study of the local behavior of the

unsteady flow.

U.
Suppose we increase the speed of the inner stream, so that the ratio

decreases gradually from 1 to but E Is still . The sequence of events is
4 Pt 7

shown in Fig. 5.1(e) (bottom) to Fig. 5.1(a) (bottom). If we were anticipating

larger and larger vortical structures in the pictures, we would be disappointed.

The side views of the mixing layers show that the flow is dominated mostly by

three-dimensional small-scale structures, with the two-dimensional vortical

structures taking on diminishing importance.

The growth rate of these flows, measured from long-time-exposure pictures

described in Section 7.1 below, Is shown in Fig. 7.5. The figure suggests that,

although the speed ratio has changed from 1 to roughly 1/4, the growth rate of

these mixing layers has changed only slightly. The presence of small structures

and the constancy of growth rate imply that the dominant role is probably

played by Rayleigh-Taylor instability.

As mentioned earlier in this section, the flow P In Fig. 5.1(b) (bottom) can be

realized from the flow In Fig. 5.1(b) (middle) by reducing the density of the

fluid in the outer stream. Since the large vortical structures in . exhibit

strong three-dimensionality, the same three-dimensionality ought to exist also

°• .o o ° ° . ° ' " - ,- ' °- . . .
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in the flow P. because there is no stabilizing mechanism to stop it. There are

at least three mechanisms causing instability in this latter flow A. These are

the Kelvin-Helmholtz instability, the Rayleigh-Taylor instability, and the Taylor-

Grtler instability. As expected. our flow pictures show that the interface

between the two streams becomes very complicated.

One difficult question is whether or not an unstable density distribution helps

to drive the flow in favor of Taylor-Grtler instability in such a way that helical

structures appear in each of the roll cells, which therefore resemble those exist- m
ing between cylinders rotating in the same direction. Such a flow pattern can-

not be stemd and axtsymmetrLc simultaneously, unless the individual fluid

particles can change their properties - density, velocity, temperature, etc. - with

time periodically as they move around, so that these properties are consistent

with the stationary properties of the fluid on the boundary. Such behavior is

possible in circular Couette flow, in which the speed of the fluid particles can be

changed by viscosity. It is also possible in Bernard convection, in which the tem-

perature can be changed by heat transfer. When the density difference is not

due to change of temperature but to difference in species, no density balance

can be expected, because species are convected with the fluid. In turbulent

flows, molecular diffusion, like viscosity, is unimportant. The absence of a. .

mechanism which allows each species to affect the density of the other in a mix-

ing layer hence rules out steady axisymmetric flow as a possible solution.

Apart from this observation, there is no apparent reason why helical struc-

tures cannot exist in a mixing layer with the heavy fluid on the inside. Unf or-

tunately, such structures have not been identified in our flow visualization pic-

tures so far. The fact that the three instability mechanisms may all be effective

at the same time has made the flow too complicated to show a clear pattern.

' L _
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The picture for flow A. shown in Fig. 5.9, suggests that the streamwise distur-

bances are much stronger then in a plane mixing layer. However, the Rayleigh-

Synge criterion is not able to explain this phenomenon satisfactorily if we con-

sider the mean flow alone, for reasons discussed earlier.

Some experiments have also been done for curved mixing layers with the

heavy gas in the outer stream. Figs. 5.1(a) (top) to 5.1(i) (top) show the

sequence as the speed ratio U./U increases gradually from L to 4. In all of

these pictures, the interfaces between the fluids are relatively sharp, and the

thickness of the bridges is quite close to that in a straight mixing layer. The

plan views of these pictures (for example. Fig. 5.11) indicate weaker three-

dimensionality (compared with Fig. 5.9, say). .

Two-dimensional vortical or spanwise structures can be defined very well

throughout this flow regime. However, the growth rate of the mixing layer

appears to be greatly reduced when the outer, heavier stream is moving faster.
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VL Proflies of Mim Conmt-alon and Mmn Veoty

A general point of interest in turbulent flow studies is the property of self-

similarity. For plane mixing layers, there is no preferred length scale in the

flow, so that self-similarity is suggested by intuition and is usually confirmed by

experiment. In a curved mixing layer, the radius of curvature is a new length

scale in the flow. For mixing layers of constant density, the extra rate of strain

due to curvature is proportional to a Thus the turbulent flow will be self-

preserving only if the ratio - is kept constant. For mixing layers with a large
R

density difference, the effects of centripetal acceleration may be more impor-

tant. The gradient Richardson number, L " L where g M may • L

become an important parameter, and again suggests the desirability of keeping

constant in order to keep the mixing layer self-similar. However, both the -

thickness of the mixing layer and the radius of curvature are unknown prior to

experiments, and in any event both quantities are difficult to define.

Since the main concern of the present research is with the effects of curva-

ture on coherent structures in mixing layers, no attempt was made to achieve a

constant ratio of L The question of whether or not self-similarity exists in our

curved mixing layers therefore cannot be resolved from the profile measure-

ments about to be described. Nevertheless, our measurements allow the thick-

ness and the virtual origin for each mixing layer to be determined and used as a

reference for other variables as well as for future experiments on curved mixing

layers.
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Profile measurements have been made for six flow cases, denoted in Fig. 4.1

and Table 1 by the symbols B ,A ,A', P , PY and . All have density ratios

different from 1; i.e., either 7 or 1/7. For each flow, traverses were made at four

downstream angular positions located 10, 15, 20 and 25 degrees from the trail-

ing edge of the splitter plate. The mixing layer in the flow P grew so fast that it

touched the curved walls somewhere between 20 and 25 degrees downstream,

and no profile measurements were made for the last downstream location in

that flow. Each traverse consisted of measurements at 15 radial stations. The

first and last stations were always located well outside of the mixing layer. At

each station, 4096 samples were collected at 33.3 kHz for each of the two

probes, the concentration probe and the pitot-static probe. The elapsed time of

the measurements for each station was 0.12 seconds. For the typical flow

covered in our measurements, this elapsed time corresponds to the passage of

roughly twenty vortices over the probes.

Mean concentration data were obtained by averaging the 4096 concentration

values inferred from the voltage signals, using the calibration polynomial for the

concentration probe. The mean concentration was used to determine the mean

density according to the experimental conditions. The mean velocity was finally

calculated from the mean density and the mean dynamic pressure, the latter

obtained by averaging the 4096 pitot-static-probe measurements. Some

features of these mean profiles will be discussed in this chapter.

Despite the fact that . varies in our experiment, mean concentration

profiles at different down-stream locations for a given flow are usually quite

similar to each other. In order to establish the thickness of the mixing layer,

points of 10-percent and 90-percent concentration of helium were used to deter-

mine the mixing boundaries. Since the measurements were made at discrete

radial locations, the actual mixing boundaries had to be determined by
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interpolation. A cubic-spline interpolation routine was used for that purpose.

The two boundaries determined in this way for each mixing layer were then

fitted by a straight line, using a least-mean-square method, and finally the vir-

tual origin of each mixing layer was determined.

After collapsing profiles for the same flow onto a single picture, with the

independent variable r or ii normalized by the local thickness of the mixing.

layer as determined from the fitted boundaries, it was found that a straight-line

fit through the boundaries was usually satisfactory. For a typical example, see

Fig. 6.1. The same remark applies to the majority of the flow cases studied.

Hence straight lines were adopted for the mixing-layer boundaries determined

from the profiles of mean concentration.

The same approach was followed in dealing with the mean-velocity profiles.

However, it was first found that the velocity did not approach a constant in

either free stream of the mixing layers, especially if the velocities were higher

toward the center of curvature. Inasmuch as the flow outside of the mixing

layer is irrotational, we expect the velocity to vary like 1/r if the irrotational

flow in the curved channel is well developed. On the other hand, the flow right at

the exit of the nozzles is supposed to be uniform except for possible deviations

due to the influence of the curved channel downstream. Therefore, there is a

transitional region near the channel entrance in which the irrotational flow

changes from a uniform inlet flow into a vortex-like flow. Since the measure-

ments are all for locations more than one channel height downstream of the

channel entrance, there is some hope that they are out of the transitional

region. Profiles of Ur were therefore plotted, and there was substantial

improvement. Hence w' profiles, rather than velocity profiles, are used in the

rest of our study.

.1-
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The growth of the mixing boundary as determined from the ur profiles was

also determined by a straight-line fit; see, for example, Fig. 6.2. The virtual ori-

gins determined from the concentration and a" profiles are different, although

the difference is small for most of our flows. For such flow cases, the average of I

the two virtual origins was taken, and revised mixing boundaries were calculated

by forcing the fitted straight lines to pass through the average origin for the

concentration and the ur data. The final profiles of mean concentration and

ur product are plotted in Figs. 8.3 to 6.6 for various flow cases as functions of

V° -where z, and V,, are the tangential and normal coordinates of the vir-

tual origin, respectively. It appears that the profiles for a given flow coincide

quite acceptably, and a common profile can be drawn to represent the mean dis-

tribution for both concentration and ur-product.

Two flow cases do not lend themselves to this treatment. The first flow giving

trouble is P. This is a case in which the mixing layer grew so rapidly that it

touched the curved walls about 11 cm downstream of the splitter plate. It also

happens that the velocity profiles for this flow have significant overshoot above

the velocity of the highspeed stream, and the scheme discussed above for col-

lapsing velocity profiles does not work. The result, shown in Fig. 6.7b, was a vir-

tual origin located downstream of the splitter plate. This virtual origin is also

significantly different from the virtual origin determined by using concentration

profiles, as shown in Fig. .7a. The other flow giving trouble is U, for which the

concentration profile is shown in Fig. 6.8. Again the problem originates in the

profile of aw. Since the free-stream velocities in this case are roughly equal, a

different scheme was needed for determining the mixing-layer boundaries using

the profiles of r. Two runs at different Reynolds number were available for

this flow. The u- profiles from the run at lower Reynolds number show

significant wake behavior in the mixing layer. However, the defect velocities

C. ILL
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cannot be determined with accuracy because the number of data points is too

small. The other run, at higher Reynolds number, gave ur profiles having dou-

ble peaks along with the wake deficit. These results cast some doubt on the

accuracy of the pitot-static measurement as a reference for velocity. Two ques- p

tions arise. First, the pitot-static probe may have picked up a contribution to

dynamic pressure from velocity components not parallel to the probe. Second,

cross-correlations such as T-, I and Iz #p-, which were neglected in calcu-

lating mean velocity from average data for dynamic pressure and density, may

be important. However, it is then not clear why there is less difficulty with the

remaining flows.

. . . . . - .
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II IAngth Scale. and Cderity

Our flow visualization results, reported in the previous section, indicate that

the dominant structures in curved turbulent mixing layers are spanwise and

streamwise secondary structures, just as in plane mixing layers. The present

section will discuss some observed differences in the structure of different flow -

cases when the sense of the curvature is changed.

Two quantities of interest for the large vortical structures can be derived

from the high-speed movies. These are the spacing between adjacent structures,.

* and the speed of movement, or celerity, of the structures. The vortical struc-

tures are not symmetrical in shape. The leading edges are relatively diffuse, and

it is very difficult to establish their location. However, the trailing edges are nor-

mally quite sharp and can be located with good accuracy. The trailing edges of

the large vortices were therefore used for locating each structure. Additional-

guidance is provided by the plan view of the flow, in which the trailing edges of

the vortices appear as faint horizontal lines, as seen, for example, in Fig. 5.9.

These lines are the major references used in determining the trajectories of the

trailing edges. All of the measurements discussed in this chapter were carried

out manually, by projecting the high-speed movies on a screen and scrutinizing

the pictures frame by frame. For each flow, one thousand continuous frames

were sampled. The elapsed time is 0.5 seconds in the real flow, since the movies

* were taken at two thousand frames per second. For calculating the speed of the

trailing edges, timing marks on the edges of the movie film were used as a time

base. Several small black rectangles were attached to the flat mirrors during

the flow-visualization experiments. The images of these marks helped to

%.. 7. "- q
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determine the scale between the pictures and the real flow.

7.1. Lagth Scafee of Speanwle MStruvre

The locations of all trailing edges of all large vortices in a frame werej.

recorded on graph paper, as shown in Fig. 7.1, with horizontal axis representing

downstream distance z and vertical axis representing frame number. To calcu-

late the spacing of these large structures at a given downstream location, the

distances between all pairs of adjacent trailing edges which passed over that

location were averaged. The variation of the spacing S along the x direction is

shown in Fig. 7.2 for various flow cases. Although one thousand frames were

sampled, the average number of useful samples for each spacing calculation is

only about two hundred. Given the fact that a particular vortex can be observed I.

for several, say ten, frames of the movie, only about twenty individual vortices

are considered In the calculations. The resulting curve of the average distribu-

tion of the spacing between vortices therefore shows considerable scatter. Stan-

dard deviations as large as 30 percent are common. Much of this scatter is

caused by the pairing phenomenon between vortices. A given vortex does not

grow smoothly, instead, the spacing roughly doubles at every pairing process.

Another dimension of interest for the spanwise structures is the thickness of

the structures. This quantity can be inferred from the thickness of the mixing

layer as measured on photographs obtained with a long time exposure, using

schlieren techniques. Fig. 7.3 shows an example of such a picture, exposed for

one second for the flow P. The picture was taken with a Hasselblad 500 EL/M

camera equipped with a 1:5.6 lens (f = 250 mm) together with a negative men-

iscus lens (1.75 diopter, f = - 571.4 mm) for focus correction. The little white

rainy spots visible n the plan view of the flow are due to tiny gas bubbles in a

defective lens located next to the light source of the imaging system, and are

not related to the flow itself. The side view of the mixing layer has good contrast

a
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and was used in determining the visual growth rate.

The boundaries of the mixing layer were first marked with many little dots, as

exemplified by Fig. 7.3. Care was taken so that these dots were clearly distin-

guishable, yet tended to merge into the dark background of the mixing layer.

These dots were fitted with the aid of a French curve. The thickness of the mix-

ing layer was then measured radially at several downstream locations for which

the downstream distance was determined along the centerline of the curved

channel. A sheet of transparent plastic engraved with the geometry of the

curved channel and the center-line, together with several radii going through

their common center of curvature, was employed as a template and was found

to be very helpful for measuring the mixing-layer thickness. Depending on the L

flow, however, the mixing-layer boundary sometimes is not sharp; for example,

see Fig. 7.4, which depicts flow D . Hence the visual thickness measurements

obtained this way can serve only a qualitative purpose. The distribution of the

thickness of the mixing layers in the streamwse direction is shown in Fig. 7.5

for several cases. It is clear from this figure that the growth rates for the flow

cases P, . f, and U, all with unstable stratification, are not very different,

even though they have drastically different velocity ratios. On the other hand,

for the flows with stable stratification, the velocity ratio has a large effect on the

growth rate. In an attempt to separate these influences, a small separate study

was made to determine how the spreading rate depends on curvature and den-

sity difference for the case of equal velocities.

If we look at the problem of growth in laboratory coordinates, we note that

the growth rate h = is dimensionless. The velocity ratio EL being equal
dw z

to unity, does not enter the problem. The density ratio is an independent
.1PA

parameter. The growth rate can thus be written

, ., ,,' 'o'-',. , .. -. , .. ..... . . , ,,, .*.. . . .... . . ., . . ..- . . . .. . -. . . .. ,. . • .- . , . '. . ' .
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Suppose that the outermost boundary of the layer marks the location of fluid

elements which have penetrated the other stream with the fastest speed. Let p

the fastest cross-stream velocity be v', so that v /U is the tangent of the angle

between the trajectory of the fastest penetrating particle and the direction of

the mean flow. This angle must be proportional to the spreading angle of the

mixing layer. Hence we have

v U/U fn R J (7.1.2)

Consider now the same problem in moving coordinates, as indicated in Fig. 5.7

The important physical quantities are v. G and b where G is the

equivalent reduced gravitational acceleration,

G : R(7.1.3)

For this new problem, the only new dimensionless group is the Froude number

V,*2/Gb, which must be a physical constant; i.e.,

V bcomant (7.1.4)Pat [ +PoJ

From this relation it follows that the growth rate shou.id be inversely propor-

tional to the square root of the radius of curvature,

-. . .. . .
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To obtain the proportionality constant, K a few experiments were carried out

using channels with different radii of curvature. The spreading rate measured B

from long-time-exposure pictures is shown in Fig. 7.8. The proportionality con-

stant K is plotted against " in Fig. 7.7. The value of K
.LP;.P R -

approaches asymptotically a constant value of 0.85 as the curvature increases,

showing that Eq. (7.1.5) is valid when - - is large. The observed
L• ." R

departure as the curvature decreases may be explained as a consequence of the .

wake left by the splitter plate. When there is no curvature, the turbulent wake

should grow like the square root of the downstream distance. This effect should

persist to some degree when the curvature is small. The relative importance of

the body force increases with down-stream distance, while the importance of the

wake decreases. The role of the body force becomes dominant after a certain

distance z, depending on the radius of curvature. As shown in Fig. 7.8, a linear

b
region in the growth boundaries is more evident when the ratio is larger. The

value of K reported in Fig. 7.7 is derived from the linear portions of the curves

in Fig. 7.6.

The ratio of the thickness of the mixing layer to the spacing of the spanwise

structures is representative of the geometry of the structures. In Fig. 7.6 this

V P--U + 1
1. I

ratio has been plotted against the variable , which is the same

P2 U 1

variable used in the next paragraphs in the analysis of celerity data. It is

+ .. . .
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evident in Fig. 7.8 that, except for the flows Xand D', which have unstable

stratification, all the rest of the data fall close to a fiat straight line, indicating

that the geometrical shape is essentially constant. However, the cases X and B"

have much thicker, or fatter, vortices than the rest of the flows. For these flow

conditions, in which there is unstable stratification, it seems that changing the .

velocity ratio has a strong effect on the shape of the spanwise structures.

7.2. Celerity

The same set of motion-picture records was used to determine the celerity of

the trailing edges of the large vortices. Average values for the slopes of the tra-

jectories of all vortices which are visible in more than ten adjacent frames gave

the celerity values listed in the last column of Table 1. In this table the experi-

ments were all carried out at 4 atmospheres. with the flow-speed settings indi-

cated in the second or the third column. The fourth and fifth columns of the

table show, respectively, the velocity ratio and tle density ratio for each run.

Capital letters in the first column identify the various runs for easy reference.

For some of the runs, no value of celerity is given. The reason is either that the

spanwise vortices in these flows are too close together, especially when the velo-

city ratio is close to unity, or that the two-dimensional spanwise vortices are

overshadowed by strong three-dimensional structures of finer scales, and it is

almost impossible to determine the location of the large vortices.

The standard deviations listed with the celerities are in the range from 5.5

percent to 13.5 percent. Part of this scatter is due to error in the measure-

ments. However, most of the scatter reflects the natural variation of the speed

of the trailing edges of the structures. This variation is especially large when I

neighboring vortices are involved in the pairing process, as shown in Fig. 7.1.

The largest scatter for the celerity data Is found in the first and last entries in

the table. These two flows have the largest velocity ratio, and the mixing layers

* . : 2
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spread faster than for the remaining flows. Thus these two mixing layers may

have been subjected to stronger wall effects than the others. Apart from these

two cases, the standard deviation in the celerity measurements is less than 10

percent.

Celerity measurements have been reported in the past only for a few flow

cases in straight mixing layers. The convective velocity given by Brown and

Roshko (1974) for a straight mixing layer having velocity ratio 0.38 and density

ratio 7 is c/U, = 0.53 (cf. the entries for flows A and A in Table 1). As pointed 9.

out by Brown and Roshko, this value is significantly lower than the average velo-

city of the two streams.

A simple argument can be found to estimate the celerities of the large span-

wise vortices in the present flows. This argument is based on Coles's conjecture

(1981) for the mean particle paths near a vortical structure in the mixing layer,

as shown in ig. 7.9. In this figure, S is a saddle point; i.e., an internal stagna-

tion point in the flow. The picture represents the streamline pattern that would

be seen by an observer travelling at the celerity, which is the speed of the criti-

cal points in laboratory coordinates. One stream of the mixing layer is moving

to the right at a velocity (U - c), and the other stream is moving to the left at

(c - UZ). The densities are Pi and p2 , respectively, for the two streams.

Given that the flow pattern is steady in celerity coordinates, Bernoulli's 3

theorem should apply along the converging separatrix. Thus

S(U-c) 02 + Pal (72.1)

• ° ..

'°-
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- (c - U2)2 + P2 PMt (7.2.2)

, where Pot and Pot are the stagnation pressures on the rwo sides of the

interface at S. Under equilibrium conditions,

POi Pon. (7.2.3)

,%.

Within the boundary-layer approximation, there is no difference between the

static pressures pI and Pt in either coordinate system. Finally. therefore.

_p- (Ul -c)' = -p,(c - U,)' (7.2.4)

This result has also been argued independently by Dimotakis (1984). An obvious

choice of sign (Ul > c > U2) gives

U -C e (7.2.5)
C -U 2  -/FP

The solution for c In its most symmetrical form is

-/PIUI + I/ U2 (7.2.8)--rP I + NrP 2

This estimate of celerity Is based on the model proposed by Coles for straight

mixing layers. When the mixing layers are curved, we expect the expression to

be still valid provided that the curvature is mild.

'.I
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To compare our experimental results with Coles's model, we note that Eq.

(7.2.6) implies

• 3 2c = .3.. (7.2.7)
: , " ~U s , + t i + Z '"' " -

-~ . ,4-a ..+

where u. and 1 are the estimated free-stream velocities in the curved mixing

layer and

-4---

Z=(7.2.8) .
Pe + _. %o.:

Experimental values of celerity are plotted in Fig. 7.10, with Z as abscissa and

2c4u, + u1) as ordinate. Closed symbols correspond to data for flows which are L

unstable according to the Rayleigh-Synge criterion expressed by Eq. (2.5.10).

Both kinds of symbols appear to lie below the the theoretical curve, perhaps

because the presumably slightly higher celerities of the leading edges are not

taken into account. This result shows that some effect of streamline curvature

on the celerity of the large two-dimensional vortices may exist. Nevertheless,

the overall agreement between the experimental data and the theory based on

Coles's model is quite good.

7.. gth Salem of Streamwise Structures

The length scale in the spanwise direction is also of interest. The streamwise

streaks in the plan view of our flow pictures presumably correspond to the edges

of ridges of fluid whose crossections look like mushrooms, as shown schemati-

caUy in Fig. 7.11. One such ridge introduces a group of bright or dark streaks

into the plan view of our pictures. For regions close to the trailing edge of the



3plitter plate, these patterns are directly associated with the flow structure in

the streamwlse direction. In these regions the length scale. i.e.. the spacing of

the streamwise structures, can therefore be determined by measuring the spac-

ing between groups of streak.

Farther downstream, the information carried by the streamwlse patterns is

twofold. On the one hand, the patterns are directly traceable to structures

formed upstream and convected with the fluid. On the other hand, new struc-

tures may appear, or old structures coalesce, as the flow travels downstream.

The new structures introduce new length scales and may modify the patterns

created earlier. A typical series of pictures showing the evolution of the stream-

wise structures is shown in Figure 7.12. The streamwise streaks which emerge

from the top of the pictures are more or loe equally spaced. The same number

of streaks can be followed for a long distance downstream as they are convected

with the flow. The spacing between these streaks, however, is no longer uniiform

as it was bef ore. The change in the spacing is more or less periodic in the span-

wise direction. This sugest the existence of a new structure in the streamwise

direction. The spacing of this new structure is equal to the period of the

changes and is different from the spacin between the streak.

In our measurement for the spacing of the streamwise structures, the longest

average period of repeatable patterns of streaks was determined for six down-

stream locations, frame by frame, using the same section of high-speed movies

employed in our former measurements. The streaks are highly visible in the

bridges, which were centered on specified downstream stations in the frames in

which the spacing was measured. The percentage of the movie frames which

show distinct length scales, as exemplified by Fig. 7.12, is, on the average, small.

Depending on the fow and on the downstream location where the measurements

were made, this number ranges from 1 to 40 percent with mean value at roughly

... °. *-_
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5 percent. The reut of the movie frames either do not show the patterns at the

places where measurements were made, or suggest different length scales In

repeated measurements, or show different spacing at different spanwise loca-

tions. For example, in the upper part of the first picture in Fig. 7.12, four pairs

of streamwise streaks are clearly visible. They are more or less equally spaced. .

and hence are considered to comprise a good sample for the measurement

made at that downstream location. The span from the first pair to the last pair

of streaks was divided by three to give the average spacing for this sample pic-

ture at the appropriate downstream location. The same was done for the upper

and middle part of the second picture and the middle and lower part of the

third picture. On the contrary, no distinct length scales are visible in the middle

and lower part of the first picture. Hence no measurements were taken from

these portions of the first picture during the measurements made for these

downstream locations.

Some streamwise patterns seem to appear in the upper part of the third pic-

ture and the lower part of the second picture. However, it is hard to establish

how many pairs of structures exist. To avoid subjective judgements as much as

possible, all such samples which might lead to ambiguous length scales were

dropped. Results from the rest of the pictures were then averaged to give the

data shown in Figs. 7.13(a) to 7.13(j). For convenience, data for each pair of

flows with the same velocity ratio and density ratio are displayed in the same

figure. The only difference between the two flows in each figure is the sense of

curvature of the mixing layer. Open symbols correspond to data for flows which

are stable, while closed symbols are for flows which are unstable according to

the Rayleigh-Synge criterion. The abscissa in these figures represents down-

stream distance normalized with respect to channel height. The ordinate is the

average spacing of the streamwise structures.

. . ... ............ -.. - . . .. . . . ..
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Due probably to the limited number of samples available, especially for mess-

urements at locations far downstream, some of these figures do not show a P
monotonic trend of increasing length scales with increasing z; see, for example,

Figs. 7.13(d), 7.13(e), and 7.13(f). In general, however, an increase of spacing

with increasing downstream distance is quite apparent. Throughout these

figures, the closed symbols (unstable flow) almost unanimously lie above the

open symbols (stable flow). The rate of increase of spacing is faster for the runs

represented by the closed symbols. Hence the effect of curvature appears to be

strong in changing the spacing of the streamwise three dimensional structures.

Adverse curvature tends to create large-scale three-dimensional structure in the

streamwise direction. b .

In principle, using the results of length-scale measurements for the stream-

wise structures, virtual origins can be determined. Whether or not these virtual

origins coincide with the virtual origins determined from the growth of the two-

dimensional spanwise structures is a pertinent question. Unfortunately, the

limited number of available length-scale measurements, at only six downstream

locations, and the significant scatter of sampled data, prohibit us from fitting

straight lines to the length-scale distribution with meaningful accuracy. How-

ever, the results of the transverse length-scale measurements, as shown in Figs.

7.13(a) to 7.13Q), suggest that almost all the virtual origins determined accord-

ingly would be located upstream of the trailing edge of the splitter plate.

Virtual origins based on profile measurements have been obtained for flows

A, X' P, P and B, as discussed in Section 5 above. Apart from flow , the vir-

tual origins determined from concentration profiles and from velocity profiles

are quite close together. Hence averaged virtual origins for these five flows have

been marked in Figs. 7.13(a) to 7.13(c). For purposes of comparison, straight

lines passing through these virtual origins were drawn to fit the length-scale

., , .



- 89-

data for each experiment. Taking Into consideration the significant uncertainty

involved in the length-scale measurements, especially around the trailing edge

of the splitter plate, where the flow is not yet self-similar, or around the end of

the test section, where the number of available samples is very small, the corre-

lation shown in Figs. 7.13(a) to 7.13(c) appears to be reasonably consistent. This

finding suggests that the scale of the streamwise structures shares the virtual

origin obtained from the profile measurements.

'V.

. . ,.•. .



7• -77

-90-

For curved mixing layers with uniform density, the sense of the channel cur-

vature has a large effect on the coherent structure of the layer, as pointed out

in Section 5.1. The effect can evidently be attributed exclusively to Taylor-

G6rtler instability. The effect on the structure of the flow is two-fold. First,.

three.-dlmensionality is enhanced if the faster stream is on the inside. Multiple

bridges (braids) can be seen in the side views; see, for example, Fig. 5.5. Second,

movie sequences like that represented by Fig. 5.6 show that the pairing

phenomenon, which is common in the plane mixing layer, is much less common

in the curved flow. These observations suggest that growth of such mixing

layers Is accompanied by three-dimensional interactions among the primary

structures.

For mixing layers with different densities, discussed In Section 5.2, three-

dimensionality is greatly inhibited if the heavier fluid Is on the outside. The

growth rate Is also reduced, compared with the corresponding plane flow, If the

outer stream is faster than the inner stream. On the other hand, if the heavier

fluid is on the Inside, three-dimensionality Is greatly enhanced by effects of

Rayleigh-Taylor instability (as a result of the body force) or Taylor-G6rtler insta-

bility (if the inner stream is also faster) or both. The Rayleigh-Taylor instability

often appears to dominate. Many of the flow-visualization pictures show a flow

covered by fine-scale structures; see, for example, Fig. 5.1(b) (bottom). Large-

scale spanwise structures may still be visible when the velocities of the two

streams are sufficiently different.

* .... '-- . "
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The concept of coherent structure in turbulence leads in Section 7 to a useful

application of the Lagrangian point of view. Coles's model (1981) for the span-

wise structures in mixing layers, described in Section 7.2, immediately yields an

estimate for the celerity of the spanwise structures. Comparison of this

theoretical result with celerity data measured from high-speed movies, as shown

in Fig. 7.10, shows excellent agreement over the whole range of velocity ratios

and density ratios covered by the experiments. According to these measure-

ments, the sense of curvature does not seem to have much effet on the celerity

of the coherent spanwise structures. Coles's model stipulates that there are col-

liding streams near the saddle points, or internal stagnation points, of a mixing

layer. According to Aryshev, Golovin and Ershin (1981), the local streamline cur-

vature associated with such colliding streams can lead to Taylor-GSrtler instabil-

ity. Thus the colliding streams may very well be responsible for the initial for-

mation of streamwise vortices. The additional curvature introduced by the

curved channel used in our experiments is mild compared with the local curva-

ture of the colliding streamlines. However, for the constant-density case, dis-

cussed in Section 5.1. our experiments show that the sense of the mean stream-

line curvature strongly affects the three-dimensionality of the mixing layer, and

also that the regular pairing process is inhibited when the inner stream is faster

than the outer stream.

The growth-rate measurements reported in Section 7.1 show that the flows

, if and U, all with the heavier fluid on the inside, grow at about the same

rate, although they have drastically different velocity ratios. This result may be

peculiar to our experiments, which are constrained to use a very large density

ratio; namely, ph = I/?. On the other hand, according to Brown and Roshko

(1974) and Dimotakis (1984), the effect of density difference on the growth rate

of a plane mixing layer is small, whereas the effect of velocity difference can be

large.
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The Lagrangian argument in Section 7.1 led to a relation (7.1.5) for the

dependence of growth rate on mean radius of curvature for the case of a curved

wake with the inner stream heavier. This relatiox suggests that the height of

the channel, b, is an important length scale if the channel is curved. The

quantity on the right-hand side of Eq. (7.1.5); i.e.,

bI

approaches zero as R - , whatever the value of b, as long as b remains

much smaller than R. Hence the effect of finite channel height b should not

be observable for a plane mixing layer.

This conclusion applies for curved mixing layers with significant density

difference. Nevertheless, it brings up two questions. First, the ratio of the

height of the two streams in a curved mixing layer may be an important param-

eter which should be considered in future experiments. Second, the height of

the channel may be important for the structure of curved turbulent mixing

layers even if the density is uniform, and may have to be considered when exper-

imental results from different facilities are compared with each other.

For mixing layers with different densities, Taylor-G6rtler instability should

occur if the Rayleigh-Synge stability criterion, -L (pulr' ) > 0, is violated.
dr

However, Rayleigh-Taylor instability may also be expected to result from a den-

sity difference alone, if the heavy fluid is on the inside. Experimental results for

mixing layers with different densities, presented in Section 5.2 above, indicate

that the substantial density difference in our experiments produces overwhelm-

ingly strong three-dimensional small-scale structure (resembling that in our

curved wake, Fig. 5.1(e) (middle)), when the heavier fluid is on the inside, and

J.
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especially when the inner stream is also faster. This property prevented us from

observing organized streamwiue structures in this flow regime. Nevertheless, the -

length-scale measurements presented in Section 7.3 suggest that the charac-

teristic length scales in the spanwise direction depend strongly on whether or

not a flow Is stable according to the Rayleigh-Synge criterion. As shown in Figs. P

7.13(a)-7.13(). streamwise structures of large scale appear in most of the

unstable cases.

The algebraic formulation in Section 2 leads to two observations. First, for

Kelvin-Helmholtz instability, the analysis confirms that the inflection point

within a shear-layer velocity profile is responsible for the two-dimensional insta-

bility which creates spanwise vortical structures. The minimum critical Rey-

nolds number is so low that Kelvin-Helmholtz instability normally occurs almost

immediately in all of our mixing layers. This conclusion s Justified by the fact

that large spanwise structures appear close to the splitter plate in all of our

flows, except the curved wake, despite the wide range of Reynolds numbers,

1.0 x 103 - 7 x 104, covered by our experiments.

The occurrence of Taylor-G6rtler instability is described by Eq. (2.5.14), which

provides a means for testing for the production of large streamwise vortices, or,

equivalently, the destruction of large spanwise vortices originally arising from

Kelvin-Helmholtz instability. Equation (2.5.14) includes the effect of viscosity,

and therefore provides an estimate for the critical thickness of the mixing layer

where marginal instability first occurs. Thus the equation guides us In looking

for a difference In the large structure downstream of a particular location, No

such critical thickness is provided by the Rayleigh-Synge criterion, Eq.(2.5.10),

which deals only with inviscid flow.

Eq. (2.5.14) refers to laminar flow. However, Lessen and Singh (1974) suggest

that turbulent shear flows can be visualized as marginally stable in terms of the

44_



-94-

usual kind of stability analysis, provided that the viscosity v IA p is replaced

by a turbulent viscosity vr. They further suggest that the Reynolds number R.

formed from the velocity difference, the layer thickness based on maximum

slope, and vr. has nearly a universal value. They propose a universal value of

the order of 150 for the case of a turbulent jet or wake (the thickness used by

Lessen and Singh is smaller than our thickness by a factor of four).

Our experiments indicate that the maximum-slope thickness is about half the

visual thickness of our mixing layers. Thus we can put k

U I (80,

IT 2

We can further estimate the various quantities in Eq. (2.5.14) as follows:

D U O + U0 t(ea
R 2R

= U, - U, (8.0.3)
dr L

- P. ~ A (8.0.4)

Equation (2.5.14) thus suggests TayLor-Gbrtler instability if

• .1
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(u, +* U02 ( 4 - U.) ,jt C- P.)
(U. -U2 (U'+ U.) 2 (pt +p,) pa)

0.189 27fr4 1 2R4 RIP 6,0b

where LA4 has been replaced by the numerical value 0.189 from Eq. (2.4.23).

Equation (8.0.6) can be recognized as an example of the kind of functional rela- p

tionship originally proposed in Equation (1.0.1) of Section 1 above. This equa-

tion shows how a given shear flow may become unstable downstream of a given

station, because the left-hand side is constant but the right-hand side decreases

with increasing z (increasing 6).

Use of Eq. (8.0.6) requires a knowledge of 6,% (z), say from long-time-exposure

photographs. Typical data for 6. as a function of x have already been

reported in Fig. 7.5. With this information, the z-station for the onset of Taylor-

Grtler instability has been determined and marked by small triangles in several

of the photographs in Fig. 5.1. In some of the pictures, no marks appear. The

flows in question are either completely stable or are unstable only at a down-

stream distance so large that it is outside of the range of our experiments.

Most of the unstable flows are represented by the the bottom pictures in Figs.

5.1 (a) to 5.1 (1). with p./ = 1R7. Hence a heavier inner stream is usually asso-

ciated with the instability. The main evidence for the appearance of Taylor-

Grtler instability comes from the observed loss of two-dimensionality for the

large spanwise vortices. Upstream of all of the triangular marks in Fig. 5.1, the

images of the spanwise vortices are relatively sharp, indicating that two-

dimensionality is maintained. The two-dimensonallty is consistently lost, how-

ever, somewhere downstream of the triangular marks. See, for example, the

- .b.. . . .
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photographs of flow D, flow B, and flow in Figs. 5.1 (g), 5.1 (a), and 5.1 (c),

respectively, all of which are consistent with destruction of the spanwise vortices

by Taylor-GUrtler instability. The photographs of the flows which are stable (no

triangular marks) typically show persistence of large spanwise vortices far

downstream.

These observations are necessarily qualitative. To locate the occurrence of

instability, using Eq. (8.0.6), we have invoked the concept of turbulent viscosity,

which is generally unsatisfactory for describing turbulent flows, and we have

employed the visual thickness, which is itself a qualitative measure. Neverthe-

less. there is a consistent overall tendency for the large spanwise structures to

lose their two-dlmensionality earlier in the unstable cases than in the stable a
cases.

L_
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Fig. 1.1 Growth rate -aj (or czci/cr) in an inviscid mixing layer

as a function of frequency Br for disturbances of the form

exp [i(ctx-8t), , spatial case; ---- temporal case

(Michalke 1965 b).
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Fig. 1.3 Curves of constant spatial growth rate -Ctj in a

viscous mixing layer for disturbances of the form expficdx-ct)]

(Lessen and Ko 1966).
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Fig. 1.4 Curves as in Fig. 1.3 after a correction for non-

parallel flow (Lessen and Ko 1966).
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C= x

Fig 1.5 Neutral stability curves for viscous flow for various

Richardson numbers; temporal growth for disturbances of the.

form exp (ict(x-ct)] with real at. The density distribution

is i-exp(-tanh y) with J0 - gS (Maslowe and Thompson 1971).
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Fig. 1.6 Reynolds stress in a curved shear layer at an

angular location 0- 600. The abscissa 7 is the radial
distance normalized by channel height; U is the velocity

of the high-speed stream. 0 , inner stream faster; 0

outer stream faster (Wyngaard 1967).
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Fig. 2.2 Neutral stability boundaries for Kelvin-Helmholtz instability
with constant density. The solid lines are from the present algebraic
approximation. The dashed lines are from analytic solutions (Betchov
and Szewczyk 1963 and Lessen and Ko 1966).
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Fig. 2.3 Neutral stability boundaries for Kelvin-Helmholtz
instability with density difference. The solid lines are
from the present algebraic approximation for Pr = G. The
dashed lines are from analytical solutions for Pr m 0.72.
(Maslowe and Thompson 1971). The Richardson number Ri is
defined by Eq. (2.7.6).
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Fig. 3.2 Detail of the splitter plate.
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Fig. 3.3 The fixture used for forming the curved walls.
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Fig. 3.6 Detail of the concentration probe.
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Fig. 4.1 Organization of the experiments. The capital letters

correspond to the flow conditions listed in Table 1. 0 .movies
are available; Ell Profile measurements are available. Pairs

like S and S have the same velocity values and the same density

values, except for the sense of the channel curvature. The dashed

line represents the inviscid neutral stability boundary according

to the Rayleigh-Synge criterion, p0U0
2

-piUi
2.
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Fig. 5.1 (a) 13/Ui 0.25; Polpj - 7/1 (top)
p/ - 1/1 (middle)

po/pi - 1/7 (bottom).



-119-

Fig. 5.1 (b) U0 /Ui 0.38; Po/pj - 7/1 (top)
p/ - 1/1 (middle)

Po/Pi - 1/7 (bottom).
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Fig 5. (c UoUi 0.0; Po/Pi 17 (boto).p
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iop - /Imide

po/o1 - 1/7 (bottom).
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Au

MI

Fig. 5.1 (e) UO/Ui 1.0; Po/pi - 7/1 (top)
Po/Pi - 1/1 (middle)
Qo/Qi. - 1/7 (bottom).
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L

Fig. 5.1 (f) UO/Ui -1.43; po/pi - 7/1 (top)
Po/pi - 1/1 (middle)
Po/Pi - 1/7 (bottom).
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sI

KI

Fig. 5.1 (g) Uo/Uj 2.00; po/pi - 7/1 (top)
Po/Pi -1/1 (middle)
Po/pi - 1/7 (bottom).
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Fig.5.1 h) o/Ui 2.63 popi -7/1 top

po/p - 11 (mddle

Fig.5.1(h) 0/U - 263; po/Pi - 17 (boto).
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Fig. 5.1 (i) U0/U. 3.95; po/pi - 7/1 (top)
Po/PI - 1/1 (middle)
po/Pi - 1/7 (bottom).
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Fig.5.2FlowJ. O/U 2.6, cnstnt dnsiy. ne famefro

the ighsped mvie Kelin-elmolt intabiityis omiant
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2 6 1

4 8 1

Fig. 5.3 Flow J. Uo/Ui 2.63, constant density. A sequence of
frames from the high-speed movie. Kelvin-Helmholtz instability is
dominant. A pairing process is visible in frames 6 to 11.
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iL

Fig. 5.4 Plans mixi.ng layer (Konrad 1976). U 0 ,Ui 2 .63, constant
density. The corresponding curved flow is J in Figs. 5.2 and 5.3.
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Fig.5.5Flow UO/i 0.8, onstnt ensiy. ne famefro
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Pis. 5.6 Flow J.U 0/Uj 0.38, constant density. A sequence of
frames from the high-speed movie. Taylor-GOrtler instability is
important. No pairing process was observed throughout the movie
f or this flow.
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Mneril coordinates

Fig.5.7TheBody forceinamvn coriteste frtosram

having equal velocities; X is the position vector of the origin of
coordinates.
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Fig. 5.8 Flow t. U0/ui 1.0, polpj 1/7. Rayleigh-Taylor
instability is important. In the plane view, the small scale
structures appear to be well organized.
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II

.I.E

Fig. 5.9 Flow X.U 0/Ui 2.63, po/pi 1/7. The flow is neutral
to Taylor-GOrtler instability, but Rayleigh-Taylor instability may
be important. Streauvise structures have thickened the bridges
between the two-dimensional vortices compared to flow A in Fig. 5.11,
where the sense of the curvature is reversed.
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-9-

U, --

Fig. 5.11 Flow A. U0/Uj 0.38, po/pi -7/1. The flow is neutral to
* Taylor-GWrtler instability; Kelvin-Helmholtz instability is dominant.

The contrast is poor for the streamwise structures in the plan view
compared to flow A in Fig. 5.9, suggesting that the amplitude of these
disturbances may be smaller.

.4-



-137-

In
E-

0

0

41a.
00

00

0 0t

a0

U4 U r i

o-j

.4-

0 -' 0 P > 0
0 15 u w

140k 0 cc cc4
to . ca V0 . 0w

-4 -4 C4 00'=
00 0 CO o -4a0 . 0 0 t

0 a. z V0
CD ~ ~~~ ~ ~ ~ P-1 Uv4.QU0 00 >V0-M

w 0

0 v4 04 0000 0 c
P. P.41O - aa*-aa2 : a : + ic A4w

'r;0
02~c F .C04



-138-

-r4

4.0
04J

0 0

r-

a a 41

0 w 0
4 0

4 ud 14 02

r4

0~ 0)

-~j - -Ha a4
U0 w



-139-

400

0 r

0

Ie

0Q

144

.0

I 00
"40(

. . . . . . . . .



-140-

v-4 Pk
0 4)

ic

0 0m
43

K0

$4

5.40
Uw 4

S00



-141-

NJ

0

'44

00W

0

40

"41

4

04.0

P4-400
04 w

0o 0

(A CIO
0 pm



%:N~mL

1422

00

r- 4)h

a) 5.

In inc0Y 4c

Q.4 44

ON - -44*4

0 r-I

q 41

q41

6-44co

-A 0 -40



InI

44

0

0

4.

to .'

'a

. . . . . . . . .. . .



-144-
4

In.

co

03
0

* 0

4cj

"4v

00
Ohew

.44

r4-

Si

040

14



-145-

40

I"

0

45

-~ 0 N
In in0 DV C

C4 d d c; C;

44 0



-146-

in

14.

0

en 4

I0)
cc

0

coi



-147-

W4 4 I

41

0 4

4.5

- 0

a 4.

0 w

v41

in- in 01.4q C
14 0

C~~i At+ s 0 s c

0 4 a

Ps ~0$
Od 0

4.
4. 014



-148-

0 %C
a +

0 0

4. 0 ).0 -

-P4
0 .0

a 42
-r

44
0O k

00
Cm 4- cs c C;4.

40~

f.'.

O44



-149-

-- d

r4

-r4

.o

-% x4

100

.

00)0aat

0

00v-



150-

60 .

50.

40.a. . .*I

30

20

S:0

Fig 7.1 Flo A. .oU 38/00. /1 apercr

0 ataotx 1 m



-151-

B

A
B

S (cm) A

D
3 D

A C

P

S
2 A S

S

0
02468 10 12 14

0 2 4 6x (cm)

Fig. 7.2 The spacing S between spanwise vortices as a function of
the downstream distance x. The data from each flow are identified
by the corresponding capital letter.
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U°

Fig. 7.3 Flow P. U0/U- 2.63, po/pj 7/1. Long-time-exposure
schlieren photograph (1 see). This flow is very stable. The small
dots on the edges of the mixing layer are placed by inspection and
are used for defining the visual thickness.
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Fig. 7.5 The visual thickness Svis as a function of the down-
stream distance x for various curved mixing layers.
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Fig. 7.7 The dependence of growth rate on channel curvature for
a heterogeneous wake/mixing layer. The values plotted are measured
from the straight portions of the thickness plots in Fig. 7.6.
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Fig. 7.9 Coles's conjecture for the topology of the spanwise vortical
structure in a mixing layer. The observer is moving with the large
structure, particularly the saddle point at S (Coles 1981).
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Crossectional view

Plan view

One structure One structure

Fig. 7.11 Guide to interpretation of shadowgraph pictures of the
streamwise structure in a mixing layer.
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Fig. 7.12 Flow A. UO/Uj 0.38, po/pi 7/1. Evolution of the
streamuise structures. Three non-adjacent frames from the high-
speed movie.
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Fig. 7.13 (a) The spacing of visible streamwise structures as
a function of dimensionless downstream distance. Both e and x
are nondimensionalized by b, the half height of the channel.
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Stills Movies

Run Uo/Uj Uo/Ui Uo/Ui po/pi Celerity P

(cm/sec) (cm/sec) (cm/sec)

B 210/830 380/1500 0.25 7 626 ± 84

A 380/1000 380/1000 0.38 7 514 ± 41

D 620/1240 380/760 0.50 7 486 ± 47

C 1440/2060 380/543 0.70 7 442 ± 24

U 400/400 400/400 1.00 7

R 2060/1440 543/380 1.43 7

S 1240/620 760/380 2.00 7 652 ± 46

p 1000/380 1000/380 2.63 7 782 ± 55

Q 830/210 1500/380 3.95 7

I 830/210 1500/380 3.95 1

J 1000/380 1000/380 2.63 1 650 ± 66

K 1240/620 760/380 2.00 1

L 2060/1440 543/380 1.43 1

M 400/400 400/400 1.00 1

• 1440/2060 380/543 0.70 1

620/1240 380/760 0.50 1

3 380/1000 380/1000 0.38 1

210/830 380/1500 0.25 1

210/830 380/1500 0.25 1/7

380/1000 380/1000 0.38 1/7 811 ± 80

620/1240 380/760 0.50 1/7

1440/2060 380/543 0.70 1/7

400/400 400/400 1.00 1/7

2060/1440 543/380 1.43 1/7

1240/620 760/380 2.00 1/7 454 ± 39

1000/380 1000/380 2.63 1/7 511 ± 48

. 830/210 1500/380 3.95 1/7 628 ± 85

Table 1. List of experimental conditions and celerity data.
The reference velocities Uo and Ui are measured at the exit

of the nozzles. All experiments are carried out at 4 atmo-
spheres.
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